
ALGO Practice Problems | Set 7 November 10, 2023

• See previous practice problem sets for instructions.

• I repeat one very important instruction: You must explicitly state all non-

trivial assumptions that you make. When in doubt, over-communicate.

1. For n ∈ N the nth Fibonacci number Fn is de�ned by: F0 = F1 = 1, Fi = Fi−1+Fi−2 ; i ≥
2.

(a) Translate the following pseudocode for computing Fn into code in your favourite

procedural programming language, and time it1 on inputs n = 35, n = 40, n =

45, n = 50.

SimpleFib(n)

1 if n ≤ 1

2 return 1

3 F1← SimpleFib(n− 1)

4 F2← SimpleFib(n− 2)

5 return F1+ F2

(b) The following pseudocode is what we get from a straightforward memoization

of SimpleFib. Translate this pseudocode into code in your favourite procedural

programming language, and time it on inputs n = 35, n = 40, n = 45, n = 50.

SmartFib(n)

1 if n ≤ 1

2 return 1

3 F← a global array of length n+ 1

4 F[0] = F[1] = 1

5 for i← 2 to n

6 F[i] = 0

7 Fn← FibHelper(n)

8 return Fn

FibHelper(i)

1 if F[i] ̸= 0

2 return F[i]

3 F1← FibHelper(i− 1)

4 F2← FibHelper(i− 2)

5 F[i]← F1+ F2

6 return F[i]

1That is: �nd the clock-time taken by the code.

Page 1 of 7



Do you notice a signi�cant di�erence? If you would like to really understand

what is going on here: Try adding print statements to inspect the arguments

passed in to the recursive calls in lines 3 and 4 of FibHelper.

2. Recall the following recursive algorithm that we saw in class, for solving the Rod

Cutting problem. Here n is the length of the rod to be cut up and sold, and P is an

array of selling prices for di�erent lengths of rod2.

CutRod(n, P)

1 if n == 0

2 return 0

3 maxRevenue← −1

4 for i← 1 to n

5 iFirstRevenue = P[i] +CutRod((n− i), P)

6 if iFirstRevenue > maxRevenue

7 maxRevenue← iFirstRevenue

8 return maxRevenue

(a) Prove that CutRod correctly solves the Rod Cutting problem. Note that this

recursive algorithm has a loop from inside which the recursive calls are made. So

it is not enough to assume that the recursive calls return the correct values; you

also need to come up with a useful invariant for the loop.

(b) Note that|assuming that each array access and each operation involving up to

two numbers can be done in constant time|the running time of the algorithm

is proportional to the number of times that CutRod is invoked, starting with

the initial call CutRod(n, P). Write a recurrence for this number, and solve it

to get an asymptotically tight (that is: Θ()) estimate of this number.

(c) Write pseudocode that memoizes the above recursive solution. Derive an upper

bound on the running time of this memoized algorithm, as a function of n. How

does this bound compare to the bound that you derived for the recursive solution

in part (b)?

3. We derived the following dynamic programming solution to Rod Cutting in class:

2See the Dynamic Programming chapter in CLRS for more details on this problem.

Page 2 of 7



CutRod-DP(n, P)

1 R← an array of length n+ 1 // R = R[0 . . . n]

2 R[0] = 0

3 for j← 1 to n

4 jMaxRevenue = −1

5 for i = 1 to j

6 iRevenue = P[i] + R[j− i]

7 if iRevenue > jMaxRevenue

8 jMaxRevenue← iRevenue

9 R[j]← jMaxRevenue

10 return R[n]

We have now seen three solutions to this problem: the recursive solution given as part

of Question 2, the memoized version of Question 2(c), and the above DP. Each of

these algorithms only gave us the maximum revenue; they did not tell us where/how

to cut the input rod to realize this maximum revenue.

Modify each of these three algorithms for Rod Cutting so that it also returns a

collection of lengths (starting with zero at one end of the rod, and ending with n at

the other end) where we can cut the input rod of length n to realize the maximum

possible revenue. A sample output for n = 10 and some array P of prices might look

like: \2, 4, 7, 9".

Hint: Simplify and conquer. See if it su�ces to �nd, for each length 0 ≤ i ≤ n,

the best place to make the �rst cut on a rod of length i.

4. Recall the problem of e�ciently multiplying a chain of matrices that we saw in class:

Least Cost Matrix-chain Multiplication

Input: An array D[0 . . . n] of n+ 1 positive integers.

Output: The least cost (total number of arithmetic operations required) for

computing the matrix product A1A2 · · ·An where each Ai ; 1 ≤ i ≤
n has dimensions D[i − 1] × D[i], given that multiplying a p × q

matrix with a q× r matrix requires Θ(pqr) arithmetic operations.

Let OPT(s, t) denote the least (\optimum") cost for multiplying the sub-sequence

As, As+1, . . . , At. If s = t then OPT(s, t) = 0.

(a) Explain why there must exist an index 1 ≤ i < n such that OPT(1, n) =

OPT(1, i) +OPT(i+ 1, n) + d0didn.

Page 3 of 7



Note: The main thing to show is not the fact that such an i exists, but the

claim that it is OK to just add together the OPT() values of the sub-sequences.

In particular: Why is it that the global optimum is not smaller than this sum?

(b) Write the pseudocode for a recursive algorithm that solves Least Cost Matrix-

chain Multiplication, using the claim proved in part (a). Argue that this

algorithm correctly solves the problem.

(c) Prove that your algorithm from part (b) makes Ω(2n) recursive calls.

(d) Memoize your algorithm from part (c). Show that it now runs in O(nc) time for

some �xed constant c. What is the value of c that you get?

(e) Write the pseudocode for a non-recursive algorithm that solves this problem us-

ing dynamic programming, based on the idea of projecting onto the \breakpoint"

index i of part (a).

Argue that your procedure correctly solves the problem.

What is the running time of your algorithm in the asymptotic notation?

5. The 0-1 Knapsack Without Repetition problem is de�ned as follows:

0-1 Knapsack Without Repetition

Input: A non-negative integer n; a set of n items I = {I1, I2, . . . , In} where

item Ij has value vj and weight wj; and a maximum weight capacity

W. The values, weights, and W are all integers.

Output: The maximum sum, taken over all subsets of I of total weight at

most W, of the total value of the items in that set.

That is, the goal is to maximize
n∑
i=1

vixi

subject to the conditions (
n∑
i=1

wixi

)
≤ W,

and

xi ∈ {0, 1} for 1 ≤ i ≤ n.

For this question, assume that the weights and values are given, respectively, as arrays

Value[1 . . . n] and Weight[1 . . . n], where Value[j] is the value and Weight[j] is the

weight of item Ij.

Page 4 of 7



(a) Write the pseudocode for a recursive procedure NoRepKnapSackRec which

solves the 0-1 Knapsack Without Repetition problem for these inputs.

Argue that your procedure correctly solves the problem.

Write a recurrence for the running time of the algorithm, and solve it to obtain

a worst-case upper bound on the running time of the algorithm on these inputs.

(b) Memoize your algorithm of part (a). What is the running time of this version?

(c) Write the pseudocode for a non-recursive procedureNoRepKnapSackDP which

solves the 0-1 Knapsack Without Repetition problem for these inputs. The

procedure should be a dynamic programming algorithm based on the idea of

projecting onto a pre�x of the list of items. That is, for each 1 ≤ i ≤ n, let pro-

jection Si denote the set of all solutions which pick items only from the subset

{I1, I2, . . . , Ii}.

Argue that your procedure correctly solves the problem.

What is the running time of your algorithm in the asymptotic notation?

6. The 0-1 Knapsack With Repetition problem is de�ned as follows:

0-1 Knapsack With Repetition

Input: A non-negative integer n; a set of n item types T = {T1, T2, . . . , Tn}

where each item of type Tj has value vj and weight wj; and a

maximum weight capacity W. The values, weights, and W are all

integers.

Output: The maximum sum, taken over all multisubsets of T of total weight

at most W, of the total value of the items represented by that

multiset.

That is, the goal is to maximize
n∑
i=1

vixi

subject to the conditions (
n∑
i=1

wixi

)
≤ W,

and

xi ∈ (N ∪ {0}) for 1 ≤ i ≤ n.

The di�erence from 0-1 Knapsack Without Repetition is that here we are allowed

to pick more than one item of each type into the collection.

Page 5 of 7

https://en.wiktionary.org/wiki/multisubset


Assume, as before, that the weights and values are given, respectively, as arrays

Value[1 . . . n] and Weight[1 . . . n], where Value[j] is the value and Weight[j] is the

weight of item type Tj.

(a) Write the pseudocode for a recursive procedure RepKnapSackRec which solves

the 0-1 Knapsack With Repetition problem for these inputs.

Argue that your procedure correctly solves the problem.

Write a recurrence for the running time of the algorithm, and solve it to obtain

a worst-case upper bound on the running time of the algorithm on these inputs.

(b) Memoize your algorithm of part (a). What is the running time of this version?

(c) Write pseudocode for a non-recursive procedure RepKnapSack1 which solves

the 0-1 Knapsack With Repetition problem for these inputs. The proce-

dure should implement a dynamic programming algorithm based on the idea of

projecting onto the item types in a solution.

Argue that your procedure correctly solves the problem.

What is the running time of your algorithm in the asymptotic notation?

(d) Write pseudocode for a non-recursive procedure RepKnapSack2 which solves

the 0-1 Knapsack With Repetition problem for these inputs. The procedure

should be a dynamic programming algorithm based on the idea of projecting onto

the number of items in a solution.

Argue that your procedure correctly solves the problem.

What is the running time of your algorithm in the asymptotic notation?

7. A subsequence of an array A is any sub-array of A, obtained by deleting zero or more

elements of A without changing the order of the remaining elements. An increasing

subsequence of an integer array A is a sub-sequence of A which is in strict increasing

order.

The input to the Longest Increasing Subsequence problem consists of an integer

array A, and the goal is to �nd an increasing subsequence of A with the most number

of elements. See Chapters 2 and 3 of Je� Erickson's book for various solutions to this

problem. In this question we will deal with the (slightly) simpler problem of �nding

the length of a longest increasing subsequence of the input array.

(a) Write the pseudocode for a recursive algorithm LenLis(A) that takes an integer

array A[1 . . . n] of length n as input and returns the length of a longest increasing

subsequence of A. As always, simplifying the task makes it easier to solve:

i. First, write the pseudocode for LenLis(A) assuming that you have access

to a function LenLisBigger(A, i, j) which takes A and two indices 1 ≤ i <

Page 6 of 7



j ≤ n as inputs, and returns the length of a longest increasing subsequence

S of A[j . . . n] with the property that every element of S is larger than A[i].

ii. Now write recursive pseudocode for LenLisBigger(A, i, j). Make sure that

you correctly deal with the base cases.

(b) Write a recurrence for the running time of your LenLis(A) function and solve it.

(c) Memoize your LenLis(A) function. Derive an upper bound on the running time

of the memoized version. How does this compare with the running time of the

pure recursive version?

(d) Write pseudocode for a non-recursive procedure LenLisDP(A) that �nds the

length of a longest increasing subsequence of integer array A[1 . . . n]. The proce-

dure should be a dynamic programming algorithm based on the idea of projecting

onto index pairs (i, j) ; i < j, where the projection mimics the idea behind the

recursive solution from part(a).

Argue that your procedure correctly solves the problem.

What is the running time of your algorithm in the asymptotic notation?

Page 7 of 7


