
ALGO Practice Problems | Set 6 October 21, 2023

• See previous practice problem sets for instructions.

• I repeat one very important instruction: You must explicitly state all non-

trivial assumptions that you make. When in doubt, over-communicate.

1. Show using elementary arguments1 that log2 n! = Θ(n log2 n) holds. Note that this

involves showing that two separate statements involving inequalities hold. You may

assume that log2 x > log2 y holds for all real numbers x, y ; x > y ≥ 2.

2. The input to the Search problem consists of an array A of n integers, and an integer

a. The goal is to �nd an index i of A such that A[i] = a, or to report|correctly|that

there is no such index i.

(a) Use a decision tree argument to show that any algorithm that solves the Search

problem and is allowed to query the input only using comparisons of the following

forms:

• Is x < y?

• Is x = y?

must make Ω(log2 n) comparisons in the worst case.

Here, each of x, y could be an indexed array element of the form A[j], or the

integer a.

(b) Use an adversary argument to derive a lower bound of Ω(n) steps on the running

time of any algorithm that solves the Search problem. How do you reconcile

this with the running time of Binary Search?

3. Use an adversary argument to derive a lower bound of Ω(log2 n) in the comparison-

based model, on the running time of any algorithm that solves the Search problem

is a sorted array.

4. The input to the EasyDuplicatesCheck problem consists of a sorted integer array

A with n elements, and the question is whether A contains two identical elements

(duplicates).

(a) Provide the complete pseudocode for an algorithm that solves this problem using

at most (n− 1) pairwise comparisons of elements of A.

(b) Use an adversary argument to prove that no algorithm that solves EasyDupli-

catesCheck correctly, can make fewer than (n−1) pairwise integer comparisons|

of elements of A|in the worst case.

1That is, without appealing to heavy machinery such as Stirling's Approximation.

Page 1 of 5

https://en.wikipedia.org/wiki/Stirling's_approximation

5. Prove that each of the following problems is NP-complete. Note that this consists

of showing two properties2 for each problem. For the purpose of this question the

set of \known" NP-complete problems consists of (i) those which were shown to be

NP-complete in class, and (ii) those which you prove to be NP-complete.

(a)

1-in-3 SAT

• Input: A 3-CNF formula ϕ.

• Question: Is there a way to assign (Boolean) values to the variables

of ϕ such that each clause contains exactly one true literal? Hint:

Look for a reduction from 3-SAT.

(b)

Set Cover

• Input: A �nite universe U, a collection F = S1, S2, . . . , Sm of (some,

not necessarily all) subsets of U, and an integer k.

• Question: Does there exist a sub-collection F ′ ⊆ F such that (i)

|F ′| ≤ k, and (ii) every element of U is present in some element of

F ′?

(Such a sub-collection F ′ is said to be a set cover of the universe U.)

(c)

Hitting Set

• Input: A �nite universe U, a collection F = S1, S2, . . . , Sm of subsets

of U, and an integer k.

• Question: Does there exist a subset X ⊆ U ; |X| ≤ k such that each

element of F has a non-empty intersection with X?

Such a set X is said to be a hitting set for the collection F , because

it \hits" every set in F .

Hint: Look for a reduction from Vertex Cover.

2What are they?

Page 2 of 5

(d)

Exact k-Path

• Input: A �nite undirected graph G, and an integer k.

• Question: Does G contain a simple path with exactly k vertices?

A simple path is one which does not have repeated vertices or edges.

You may assume that the following problem is NP-complete: Hamiltonian

Path: Given an undirected graph G, decide if G has a Hamiltonian path.

A Hamiltonian path in a graph G is a simple path that visits every vertex

of G exactly once.

(e)

k-Path

• Input: A �nite undirected graph G, and an integer k.

• Question: Does G contain a simple path with at least k vertices?

(f)

Rooted k-Path

• Input: A �nite undirected graph G, a vertex r of G, and an integer k.

• Question: Does G contain a simple path that starts at vertex r and

contains at least k vertices?

(g)

Tethered k-Path

• Input: A �nite undirected graph G, vertices u, v of G, and an integer

k.

• Question: Does G contain a simple path that has u, v as its end-

vertices, and contains at least k vertices?

Page 3 of 5

(h)

0, 1 Integer Programming

• Input: An m× n integer matrix A and an m× 1 integer vector b.

• Question: Does there exist an n×1 vector x whose elements are from

the set {0, 1}, such that Ax = b?

Hint: Look for a reduction from 3SAT.

(i)

Clique

• Input: A �nite undirected graph G, and an integer k.

• Question: Does there exist a subset C of the vertex set of G such that

|C| = k, and for every two vertices u, v in C, the edge {u, v} is present

in G?

(Such a subset C is called a clique of size k in G.)

(j)

Subgraph Isomorphism

• Input: Two �nite undirected graphs G1, G2.

• Question: Is G1 a subgraph of G2? That is, is there a way to delete

zero or more vertices and/or edges of G2 to get a graph H which is,

up to renaming of vertices, identical to G1?

Hint: Use the result from the previous part.

6. Assume that you are given black-box access to a polynomial-time algorithm 3SatSolver

that solves the decision problem 3SAT. Describe how you can use this algorithm to

�nd satisfying assignments to|satis�able!|3SAT instances in polynomial time.

That is: you can call a function 3SatSolver and pass it a 3SAT formula ϕ as its

argument. The call 3SatSolver(ϕ) will take time polynomial in the length of the for-

mula ϕ, and will correctly return Yes or No according to whether formula ϕ has

at least one satisfying assignment, or not. You are required to design an algorithm

FindSatAssignment which takes a 3SAT formula φ as input, runs in time polyno-

mial in the length of the formula φ, and does the following: If φ is unsatis�able,

then the call FindSatAssignment(φ) will return No. If φ is satis�able, then the call

Page 4 of 5

FindSatAssignment(φ) will return an assignment of values to the variables of φ that

satis�es φ.

7. The problem CLIQUE-3 is the CLIQUE problem, restricted to input graphs in which

every vertex has degree at most 3. Consider following argument for CLIQUE-3 being

NP-hard. Is the argument correct? If not, why?

We know that the CLIQUE problem is NP-complete in general graphs, so it is

enough to present a reduction from CLIQUE-3 to CLIQUE. Given a graph G

with vertices of degree at most 3 and an integer k as inputs, the reduction leaves

the graph and the integer unchanged; clearly the output of the reduction is a

valid input instance for the CLIQUE problem. And, trivially, G has a clique of

size k if and only if . . .G has a clique of size k. This proves the correctness of

the reduction and, therefore, the NP-hardness of CLIQUE-3.

8. Recall the de�nition of the relation ≤P as de�ned in class. Let A,B be two decision

problems. Show that if A ≤P B and problem B can be solved in polynomial time, then

problem A can also be solved in polynomial time.

9. Show that the relation ≤P as de�ned in class, is a transitive relation.

10. Recall the reduction from 3SAT to 3COLOUR that we saw in class. Assuming the

construction of gadgets involved in the reduction, formally argue that the reduction

is correct, and that it takes polynomial time.

11. What is wrong with the following argument?

Recall that 2SAT can be solved in polynomial time. We use a polynomial-time

algorithm for 2SAT as a black-box to solve 3SAT in polynomial time, as follows:

Let the input 3SAT formula be ϕ(x1, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Ck. We look

at some clause in ϕ with 3 literals, and split it into two formulas on one of its

literals (say x), one where we set x to true, and another where we set x to false.

We simplify each of the split formulas so they are smaller. We do this until we

get formulas that all have clauses with at most 2 literals, and then solve these

formulas using the polynomial-time algorithm for 2SAT. Thus we have solved

the 3SAT instance in polynomial time.

Page 5 of 5

