
ALGO Practice Problems | Set 5 September 7, 2023

• See previous practice problem sets for instructions.

Treat all arrays as 0-indexed. You may assume the following in your analyses:

• Storing an integer takes constant space, irrespective of how large the integer is.

This is clearly not true (even in theory), but our focus in these problems is not

on the intricacies of dealing with large integers. So we make this assumption

for the sake of simplifying the analysis.

• Each operation|arithmetic, comparison, etc.|between a pair of integers takes

constant time, irrespective of how large the integers are.

• Accessing a single array element takes constant time, irrespective of the length

of the array.

Clearly state any other assumption that you need.

When arguing the correctness of loops, you need not use loop invariants (But of

course, you may !), unless speci�cally asked to do so. You must always clearly

explain why each loop correctly does what you want it to do.

1. Consider the following problem, which occurs as a sub-problem in Merge Sort:

Merge

• Input: Integers ℓ ≥ 1, r ≥ 1 and arrays L, R containing ℓ, r integers respec-

tively. Each of L, R is sorted in non-decreasing order.

• Output: An array M that contains all the elements present in L and R

(with repetitions, if any), and is sorted in non-decreasing order. This is

the array that we get when we \merge" L and R.

Write the pseudocode for a function Merge(ℓ, r, L, R) that solves the above problem

in time O(ℓ+ r), in the following way:

(a) First, come up with suitable notions of (i) a partial solution1, and (ii) a small

step that takes you from this partial solution a small bit towards the complete

solution. Convince yourself that these two notions make sense.

(b) Write the pseudocode for a function|say, MergeHelper(. . .) that solves the

small step. Note that the set of arguments to this function may be di�erent from

the set of arguments to Merge().

1\Someone else has solved most, but not all, of the problem for me."

Page 1 of 5

(c) \Bootstrap" your solution to part (b) to arrive at the pseudocode forMerge(ℓ, r, L, R).

(d) Use one or more loop invariant(s) to prove that your Merge(ℓ, r, L, R) function of

part (c) is correct.

(e) Argue that your version of Merge(ℓ, r, L, R) runs within the required time bound,

in the worst case.

The pseudocode that you come up with in this manner does not have to be identical

to the version that we saw in class; it just has to be correct!

2. (a) Write the pseudocode for a function MergeSort(A) that sorts array A using

Merge Sort, and invokes the function Merge(ℓ, r, L, R) for the merge step.

(b) Illustrate how your pseudocode from part (a) works on the input array A given

below, by listing the arguments and return values of all the calls to theMerge-

Sort and Merge functions that result from the call MergeSort(A), in the

order that these calls are made.

The input array is

A = [91, 24, 13, 45, 41, 38, 27, 23, 96, 79]

3. (a) Convert your pseudocode for MergeSort(A) from part (a) of the previous ques-

tion to a Python program. Generate a large number of random arrays and test

that your code correctly sorts all of them.

(b) Include print() statements in your Python functions of part (a), to print out the

argument and return value of each call to theMergeSort andMerge functions.

Give the array

A = [91, 24, 13, 45, 41, 38, 27, 23, 96, 79]

as input to this modi�ed MergeSort() function. Does the output exactly match

your solution to part (b) of the previous question?

4. Let A be an array with n integer elements, where each integer is between 1 and cn

for a �xed constant c.

(a) Write the pseudocode for a function HeavySubSet(A,d) that takes A and a

positive integer d as arguments, runs in O(n) time, and returns a list of all those

integers that appear at least ⌊n
d
⌋ + 1 times in A. Each such integer must be

present exactly once in the returned list. If there is no such integer in A, then

HeavySubSet(A,d) should return an empty list.

Page 2 of 5

• Hint: As is usually the case, it helps to think of a simpler problem �rst. For

instance: can you think of an O(n)-time algorithm that takes A,d, and an

element r of A as arguments, and �gures out if r appears at least ⌊n
d
⌋ + 1

times in A? Once you have solved this simpler version, try to think of a way

of \lifting" your solution to one for the original problem, without blowing up

the running time by more than a constant factor.

(b) Argue that your algorithm HeavySubSet(A,d) of part (a) is correct.

(c) Show that your algorithm of part (a) solves the problem in O(n) time.

5. Let A be an array with n integer elements.

(a) Write the pseudocode for a function HeavySubSet(A,d) that takes A and a

positive integer d as arguments, runs in O(n log2 n) time, and returns a list of all

those integers that appear at least ⌊n
d
⌋ + 1 times in A. Each such integer must

be present exactly once in the returned list. If there is no such integer in A, then

HeavySubSet(A,d) should return an empty list.

• Hint: Solve the same sub-problem as in the hint for question 4(a), but for

this type of input. Once you have solved this simpler version, try to think

of a way of \lifting" your solution to one for the original problem, without

blowing up the running time by more than a logarithmic (in n) factor. You

may want to try divide-and-conquer (in some form . . .) to do this lifting.

(b) Argue that your algorithm HeavySubSet(A,d) of part (a) is correct.

(c) Show that your algorithm of part (a) solves the problem in O(n log2 n) time.

6. Let C be an array with n images of cats that took part in a beauty contest for cats.

The same cat can have many di�erent images (of di�erent poses/attire, say) present

in C. Each image of a given cat appearing in C corresponds to a distinct vote that the

cat got in the contest. You have access to a function SameCat(x, y) which takes two

such images x, y and tells whether the two images correspond to the same cat, or not.

This function takes constant time to do one such comparison.

(a) Write the pseudocode for a divide-and-conquer algorithm QueenCat(C) that

takes C as the argument, runs in O(n log2 n) time, and returns one image of a cat

which (the cat, not necessarily the same image) appears at least ⌊n
2
⌋+ 1 times in

C. If there is no such cat in C, then QueenCat(C) should return \None".

(b) Argue that your algorithm QueenCat(C) of part (a) is correct.

(c) Show that your algorithm of part (a) solves the problem in O(n log2 n) time.

7. From the previous question you know how to �nd the majority element|if one

exists|in an input array of size n (and no constraints on its elements, except for

Page 3 of 5

constant-time equality checks), in O(n log2 n) time using divide-and-conquer. It turns

out that we can in fact solve this problem in linear time and constant extra2 space

without using divide-and-conquer. Coming up with such an algorithm requires a

non-trivial amount of creativity, and the end result looks like magic.

(a) Read up on the Boyer-Moore majority vote algorithm and the argument for its

correctness at, e.g., its Wikipedia page (or elsewhere). Make sure that you un-

derstand why the algorithm works.

(b) Let C be the array of n cat images from the previous question. Consider the

following operation performed on C: as long as there are images x, y, z of three

distinct3 cats in L, remove such a set {x, y, z} from C. Let C⋆ be the array

remaining, once this operation can no longer be performed. Prove that if a cat

C∞ had at least ⌊n
3
⌋+ 1 of its images present in the original array C, then it will

have at least one image present in the �nal array4 C⋆.

(c) Write the pseudocode for an algorithm that adapts the Boyer-Moore majority

vote algorithm to �nd all cats that appear at least ⌊n
3
⌋+ 1 times in an input list

C of n cat images, in O(n) time and O(1) extra space. Your algorithm should

output a list with one image for each such distinct cat in C. If there is no such

cat in C, then the algorithm should output the empty list. As in the previous

question, assume that you have access to the SameCat(x, y) function that returns

in constant time.

Argue that your algorithm correctly solves the problem, and that it runs in linear

time and needs only constant extra space.

8. Let A be an array containing n integers. For 0 ≤ i ≤ j < n we use A[i : j] to denote

the sub-array [A[i], A[i + 1], . . . , A[j]]. Note that this is different from the Python

convention for lists.

The Maximum Sub-array problem has such an array A as input, and asks for the

number

max
0≤i≤j<n

∑
i≤k≤j

A[i].

That is, the goal is to compute the maximum sum, taken over all sub-arrays of A, of

all the elements in a sub-array of A.

(a) Write the pseudocode for an algorithm that solves this problem in O(n2) time.

Argue that your algorithm is correct and that it runs in O(n2) time.

2That is, over and above the space required for storing the input.
3That is, for which SameCat(x, y), SameCat(y, z), SameCat(x, z) all return \No".
4In particular, this means that if C⋆ is empty then there is no cat whose images appear at least ⌊n

3
⌋+ 1

times in the starting list C.

Page 4 of 5

https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_majority_vote_algorithm

(b) We can use divide-and-conquer to improve on the running time of part (a). To-

wards this, �rst write the pseudocode for an algorithm that solves the following

simpler problem in O(n) time: Given an index 0 ≤ i < n, �nd the maximum sum

of a sub-array that includes the index i. Argue that your algorithm is correct,

and that it runs in O(n) time.

(c) Write a divide-and-conquer algorithm that solves the Maximum Sub-array prob-

lem in O(n log2 n) time. Argue that your algorithm is correct, and that it runs

in O(n log2 n) time.

9. It turns out that we can in fact solve the Maximum Sub-Array problem as well in

linear time and constant extra space without using divide-and-conquer. As with

the majority-�nding algorithm, coming up with such an algorithm requires a non-

trivial amount of creativity, and the end result again looks like magic. Read up on

Kadane's algorithm and its correctness at, e.g., its Wikipedia page (or elsewhere).

Make sure that you understand why the algorithm works.

Page 5 of 5

https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane's_algorithm

