
ALGO Practice Problems | Set 2 August 17, 2023

• See Practice Problems Set 1 for instructions.

When analyzing the running time of an algorithm you may make reasonable as-

sumptions about how various operations might be implemented in a computer. In

particular, you may assume that the following take constant time:

• Arithmetic operations involving two numbers, such as addition, subtraction,

multiplication, and division with or without remainder.

• Comparisons involving two numbers, such as testing if x < y, x = y, or x > y.

• Assignments of values to variables.

• Accessing an array element given its index.

You must explicitly state all non-trivial assumptions that you make. If in doubt,

over-communicate.

1. Derive an upper bound on the running time of procedure Euclid(x, y) given below in

terms of the total bit size n of its two arguments. That is, n denotes the sum of the

counts of bits of x and y. Your �nal answer should be a polynomial in n.

divide(x, y)

1 if x = 0

2 q = 0

3 r = 0

4 return (q, r)

5 z = ⌊x
2
⌋

6 (q, r) = divide(z, y)

7 q = 2× q

8 r = 2× r

9 if x is odd

10 r = r+ 1

11 if r ≥ y

12 r = r− y

13 q = q+ 1

14 return (q, r)

Euclid(x, y)

1 if y = 0

2 return x

3 (q, r) = Divide(x, y)

4 gcd = Euclid(y, r)

5 return gcd

2. Prove the following statement about �nite, simple, undirected graphs G by induction

on |V |, the number of vertices in G.

Page 1 of 7

Claim

Any connected graph G = (V, E) that satis�es |V | = |E|+ 1, is acyclic.

3. Let U be a|not necessarily �nite|universe of elements, and let ⪯ be a binary relation

on U. What is a su�cient set of properties that ⪯ should have, so that the following

statement holds: for any �nite subset S ⊆ U ; |S| = n ∈ N there is at least one way

to order the elements of S as a list L = ⟨x1, x2, . . . , xn⟩ such that the relation xi ⪯ xj
holds for each pair 1 ≤ i < j ≤ n?

4. Go through the Wikipedia page on sorting algorithms.

5. Recall the \small step" problem that we discussed in class, as part of solving the

sorting problem:

Small Step

Input: An array A[0, 1, . . . , (n − 1)] of n integers, and an index 0 ≤ i ≤
(n− 1) such that the part A[0, 1, . . . , (i− 1)] is sorted.

Output: An array B[0, 1, . . . , (n− 1)] where

• B[0, 1, . . . , i] is a sorted version of A[0, 1, . . . , i]

• B[(i+ 1), . . . , (n− 1)] is identical to A[(i+ 1), . . . , (n− 1)]

Try to come up, on your own, with the pseudocode for a procedure SmallStep(A, i)

that solves this problem. The code that you come up with does not have to be the

same as what we saw in class; it just has to correctly do the job.

More generally: the idea is not to memorize pseudocode like a poem(!!), but to

be able to derive it from reasoning when needed.

The next couple of questions are based on the following pseudocode for

Insertion-Sort that we saw in class.

Page 2 of 7

https://en.wikipedia.org/wiki/Sorting_algorithm

Insertion-Sort(A)

1 i = 1

2 while i ≤ (n− 1)

3 next = A[i]

4 j = (i− 1)

5 while j ≥ 0 and A[j] > next

6 A[j+ 1] = A[j]

7 j = (j− 1)

8 A[j+ 1] = next

9 i = i+ 1

10 return A

6. Translate this pseudocode to Python. Using a driver program, verify that your code

correctly sorts a su�ciently large number of randomly generated lists integers, of

various lengths.

7. Come up with a set of useful invariants for the while loop in lines 5{7. The notion of

usefulness here is that the set of invariants should help us formally complete the proof

of correctness of the invariant for the outer while loop that we saw in class. Show

that your invariants are indeed invariant, and useful.

8. There are usually various notions of what a \partially solved instance" looks like, for

any given problem. Here is a di�erent such notion for the sorting problem, than the

one we saw in class: The original task is to sort an array A[0, 1, . . . , (n − 1)] of n

integers in non-decreasing order. The partially solved instance is a pair (B, i) where B

is an integer array with the following properties:

• B contains exactly the same multiset of elements as A.

• The pre�x B[0, 1, . . . , (i − 1)] of the �rst i elements of B, are the smallest (with

repetitions, if any) i elements of A, in non-decreasing order.

(a) How is this di�erent from the partial solution that we saw in class for the sorting

problem?

(b) What is a notion of making a small bit of progress from this partial solution

towards a complete solution?

(c) Write the pseudocode for an algorithm that makes this small bit of progress.

(d) Write the complete pseudocode for an algorithm that solves the sorting problem

by bootstrapping the small-step algorithm from the previous step.

(e) Argue that the algorithm for sorting that you came up with in this manner,

correctly sorts valid inputs. Use loop invariants as needed.

Page 3 of 7

https://en.wikipedia.org/wiki/Multiset

9. Translate the pseudocode from your solution to Question 8 to Python. Using a driver

program, verify that your code correctly sorts a su�ciently large number of randomly

generated lists integers, of various lengths.

10. Read up on the Binary Search algorithm, and understand why it takes at most c log2 n

steps on a (sorted!) input array with n elements.

11. All arrays in this problem are indexed starting from 0. The input consists of two

arrays A,B of integers, each of which is sorted in increasing order. Array A contains

n integers, and array B contains n + 1 integers. No integer repeats in either array,

or across the two arrays; that is, each of A,B is in fact a set, and the list of all the

elements in A or B, is also a set.

Let C be the sorted|in increasing order|array that is obtained by merging arrays A

and B into one array. Note that C is not given as part of the input; we de�ne it just

to make it easier to describe the problem.

(a) What is the index of the median element of array C? That is, what is the value

of i such that C[i] is the median element of C? Why is this i unique? Justify

your answer.

(b) Write the pseudocode for an algorithm that takes A,B as input, takes at most cn

steps for some constant c, and �nds the median element of the array C de�ned

as above. Note that C is not part of the input to this problem.

Argue that your algorithm is correct, and that it runs within the speci�ed number

of steps. What is the constant c that you get?

(c) It turns out that since the input is sorted, we can devise an algorithm that solves

the problem much faster. For this we will use the idea that we saw in class,

namely: solve one or more simpler problems, and use their solutions to solve the

main problem.

i. Sub-problem 1: The input to this sub-problem consists of arrays A,B and

an index i into array A, and a guarantee that A[i] is the last element of A

that appears before the median element in the (unknown, and uncomputed)

array C. The required output is the median element of C.

Note that the guarantee is not that A[i] is the element of C that comes just

before the median element of C. If you don't see why this is the case: read

the problem statement again, a few times till you get it. If you have trouble

even after trying for some time: ask others and �gure this out.

Write the pseudocode for an algorithm that solves this sub-problem using a

constant number of steps in the worst case. Note that this algorithm does

not have access to C. Argue that your algorithm is correct, and that it runs

within the speci�ed number of steps.

Page 4 of 7

https://en.wikipedia.org/wiki/Median#Finite_data_set_of_numbers

ii. Sub-problem 2 The input to this sub-problem consists of arrays A,B and an

index i into array A, and the output is whether A[i] is the last element of A

that appears before the median element in the (unknown, and uncomputed)

array C. The output is thus either \Yes" or \No".

(As in the previous sub-problem: the question is not whether A[i] is the

element of C that comes just before the median element of C.)

Write the pseudocode for an algorithm that solves this sub-problem using a

constant number of steps in the worst case. Note that this algorithm does

not have access to C. Argue that your algorithm is correct, and that it runs

within the speci�ed number of steps.

iii. \Bootstrap" the solution to Sub-problem 2 to design an algorithm that

takes A,B as input, takes at most c logn steps for some constant c, and �nds

the median element of the array C de�ned as above. For this, modify the

Binary Search algorithm to �nd an index i into A for which Sub-problem 2

returns \Yes".

Once again, note that C is not part of the input to this problem.

iv. As a �nal step, think of various extreme/corner cases of input that might

not have been covered by the above algorithm. For each such case, write

down the pseudocode for an algorithm that solves the problem in a constant

number of steps.

v. Combine all these to arrive at an algorithm that solves the problem of �nding

the median of array C in at most c logn steps for some constant c. Argue

that your algorithm is correct, and that it runs within the speci�ed number

of steps.

12. Prove that when given a natural number n as argument, the following procedure prints

\Hi there!" at most cn log2 n times for some constant c which is independent of n.

HiThere(n)

1 for i := 1 ; i ≤ n ; i := (i+ 1)

2 for j := i ; j ≤ n ; j := (j+ i)

3 print(\Hi there!")

13. (a) Design an algorithm which

1. Takes a positive integer n as its input

2. Produces as its output an array LPD [0, 1, . . . , n] where LPD [0] = 0,LPD [1] =

1, and for each 2 ≤ i ≤ n, LPD [i] = p where p is the smallest prime divisor

of i.

Page 5 of 7

• \LPD" stands for Least Prime Divisor

• Write this algorithm as a procedure LeastDivisors(n) that takes n as

an argument and returns the array LPD .

• Example: LeastDivisors(10) should return the array LPD =

[0, 1, 2, 3, 2, 5, 2, 7, 2, 3, 2].

3. Takes at most cn log2 n computer steps (\time") for some constant c which

is independent of n.

• You may assume that assigning a number to a variable, adding two num-

bers, and accessing a single array element given its index, can each be

done in a constant number of computer steps. You may not assume that

Euclidean division of one number by another can be done in a constant

number of computer steps.

Hint: See if you can adapt the loops in HiThere from Question 12 to make

this happen.

(b) Prove that your algorithm correctly computes the required output.

(c) Prove that it does so within the required running time bound, given the various

assumptions.

14. (a) Design an algorithm which

1. Takes a positive integer n and the array LPD [0, 1, . . . , n] described in Ques-

tion 13 as its inputs

• That is: we assume here that somebody has computed LPD [0, 1, . . . , n]

and given it to us \for free".

2. Produces as its output the prime factorization of n

• What would be a good way to represent this output? You may choose

any one such way to represent the output.

(b) Prove that your algorithm correctly computes the required output.

15. Procedure ArraySearch below is a student's attempt at expressing the binary search

algorithm in pseudocode. The input to ArraySearch consists of

1. An array arr [0, 1, . . . , (n− 1)] of n integers sorted in non-decreasing order,

2. An integer val , and,

3. Two integers 0 ≤ begin ≤ end ≤ (n− 1).

(a) Check if the pseudocode works correctly as a search algorithm. That is:

• Either prove that ArraySearch, when invoked as

ArraySearch(arr , val , 0, (n− 1)) with valid inputs as described above

Page 6 of 7

https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm

– Returns an index i such that arr [i] == val , if val is present in arr , and

– Returns −1 (which is an invalid index for arr) if val is not present in

arr

• Or come up with a valid input on which ArraySearch fails to do the above

task.

(b) Show that|irrespective of whether it is a correct search algorithm|ArraySearch

returns in at most c log2 n steps, for some constant c that is independent of n,

when the number of elements in its �rst argument arr is n.

ArraySearch(arr , val , begin , end)

1 if begin ≤ end

2 mid = ⌊(begin + end)/2⌋
3 if arr [mid] == val

4 return mid

5 if arr [mid] > val

6 return arraySearch(arr , val , begin , (mid − 1))

7 if arr [mid] < val

8 return arraySearch(arr , val , (mid + 1), end)

9 return −1

Page 7 of 7

