evaluated Go thmugh all the queshons once before you
a pen to write. Answers written with a pencil will not .bg‘
instead, strike off cleanly and write in a fresh spot

in each such solution. You may split up the pseudocode for an algori'thﬁi :

- functions, if you wish; you don’t have to write the entire pseudocode for an :
' function.
You may use the following functions, and assume in your analysis that they wor.
with the stated worst-case running times:

e LENGTH(A): returns the length n of array A, and runs in ©(n) time;

e MERGESORT(A): returns the version of integer array A which is sorted
decreasing order, and runs in ©(nlogn) time when A has n elements.

You may freely invoke functions that you have written as part of a different answer
same answer sheet. You do not have to use loop invariants while proving the correct
algorithms; but you must correctly explain why each loop (if there are some) does wh
expect it to do.
Clearly describe the meaning of any Python (or other) syntax that you use, 50
correctly evaluate your answer. E.g., if you use the notation Ali:j] to denote a su b-
clearly explain what you mean by this. And similarly for any other notation.

Unstated assumptions and lack of clarity in solutions can and will be used against yo
evaluation. You may freely refer to statements from the lectures in your argumer
don’t need to reprove these unless the question explicitly asks you to, but 'j'ou'
precise. Please ask the invigilators if you have questions about the questions.
Warning: CMDI’s academic policy regarding cheating applies to thxs

- Input: An array D['n.] of n+ 1 posmve mtegers
The least cost (total number of arithmetic operatic

'that your algorithm of part (a)' cdrrecﬁy .'l*v Lh
(c) Write a recurrence for the total number of times T(n] thai f', -
gets called, starting with an initial call LCMMREC(D) where D is an
n + 1 positive integers. Include the first call LCMMREC(D) in t]ns connt
sure that you include the base case(s). 1 S

(d) Solve your recurrence of part (c) to obtain a tight asymptotlc bound, of the
T(n) = O(f(n)), for T(n).
(e) Write the complete pseudocode for a non-recursive algorithm LCMM(D) i.’haﬁ
solves LEAST CoST MATRIX-CHAIN MULTIPLICATION in iime polynomial in n
You will get the credit for this part only if your algorithm is (i) nON-Tecursiv
(i) correct, and (iii) runs in time polynomial in n. '

(f) Prove that your algorithm of part (e) correctly solves the problem.
(g) Prove that your algorithm of part (e) runs in time polynomial in n.

2. Consider the following problems that we discussed in class:

IIlpllt: Input: An array A = {(XOsyOJ (x1, Y1])) (xn—hyn—l]] ofn POI]]tS J
in the 2D plane where all the coordinates are integers.
Output: Two indices i # j that minimize the Euclidean distance between

(xi,yi) and (x;, y;)-

Input: An array A[0...(n— 1)] of n positive integers. ;
Output: True if at least one number appears at least twice in A, and False

otherwise.

Recall that a comparison-based algorithm that takes an array A as input (i) can
the call LENGTH(A) to obtain the number of elements in A, and (ii) can otherwise
the input only using pairwise comparisons between elements of A.

a) Write the complete pseudocode for an algonthm HasR

: any companson—based aortmg alg ‘ thm wi
worsl case, Lo sorl an array with n mtegers

must make O(nlogn) comparisons in the worst case. :

Hint: Let X be any algorithm that solves REPEATED BLEMENTS Sup
modify X to gel an algorithm Y which keeps track of all the answers
pairwise comparison questions that X makes. Can you use an adversary a:
to establish that if X correctly solves REPEATED BLEMENTS then Y can be fu

modified to gel an algorithm Z which can sort the input array A wzthout furf;

comparison queries? B

Note that just answering the question in the hint will not get you the cre
for this part. You must use your answer to the hint, to construct a compl
argument that proves the stated lower bound. The hint is provided just to poi
you towards a solution. (Of course, you could also ignore the hint and prov:d
completely different solution!)

(d) Prove that any comparison-based algorithm that solves 2D CLOSEST PAIR mus
make Q(nlogn) comparisons in the worst case.

3. Assume that all capacities and flows in this question are integral.

(a) Write the pseudocode for a polynomial-time algorithm MAXFLOWPATH[GA
(V,E),c,s,1) that solves the MAXIMUM-FLOW PATH problem that we discussec
in class, and which is defined below. Your algorithm must return the sequ 27
of vertices that forms an s ~» L path with the required property. 8
You must clearly describe the various operations of any non-trivial data stru
ture(s) that your pseudocode uses, but you do not have to provide the ch i}
implements these operations. _

You will get the credit for this part if (i) your algorithm is correct, (ii

‘data structure operations that you use in the pseudocode.

The pseudocode for Dijkstra’s algonthm is gwen afl:er the problem
~ your reference

—

DUKSTRA(G = (V, E), w, s)
E forv eV

vdist = o0 : ;
v.parenl = NIL S =5ty 8
Stdist =05S =0 for each edge v
Q = an empty min-priority queue. newdisl = v. +
il forveVv if newdist < x.dis 2
Enqueue v in Q, keyed by v.dist x.dist = new

x.parent = v
DECREASE-KE

(b) Suppose you are given a flow network (G = (V, E), ¢, s, L), together with a function
f: E — N. Describe, in words or in pseudocode, a polynomial-time algorithm
that can figure out if f is a maximum-valued (s,1)-flow in this network. You
must clearly describe all non-trivial constructions and steps that are part o :
algorithm. 5

4. Assume that creating an array takes time linear in the size of the array, and acces
ing/writing an array element takes constant time. Ignore the other costs (such as t!
cost for comparing two numbers) in the following analysis. For each of parts (b)
(d), assume that we start with an empty data structure, and call Insert() n times.

(a) Write the pseudocode for implementing a dynamic array that triples in s
when it runs out of space. Specify how this data structure is initialized, and ho
Reirieve(i) and Insert(x) work.

the worst-case cost of n calls to Insert()? Justify your answers. You will get the
credit for this part only if you provide correct justification.

(c) Use aggregate analysis to show that a call to Insert() has constant

amortiz
cost. e

_) ‘Use the accounting method to show that a call to Ins ert() has constant

