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1 Introduction to Groups

1.1 Definition and Examples

Definition 1. A binary operation ∗ on a set S is a function ∗ : S × S → S. For any
a, b ∈ S, we write a ∗ b for ∗(a, b). We say S is closed under ∗ if a ∗ b ∈ S ∀ a, b ∈ S.

Definition 2. A group is a set G with a binary operation ∗ on G, satisfying the following
properties:

1. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) ∀ g1, g2, g3 ∈ G, i.e., ∗ is associative.

2. ∃ e ∈ G, called the identity of G, such that ∀ g ∈ G, we have g ∗ e = e ∗ g = g.

3. For each g ∈ G, ∃ an element g−1 ∈ G, called the inverse of g, such that g ∗ g−1 =
g−1 ∗ g = e.

We say (G, ∗) is a group. Less formally, we might also say that G is a group under ∗ if
(G, ∗) is a group (or simply G is a group when the operation ∗ is clear from the context).
We see some examples below:

1. Z,Q,R,C are groups under + with e = 0 and a−1 = −a ∀ a.

2. Q−{0},R−{0},C−{0},Q+,R+ are groups under × with e = 1 and a−1 = 1
a
∀ a.

However, Z−{0} is not a group under × because the element 2, for instance, does
not have an inverse in Z− {0}.

3. Define S3 := set of all bijections from {1, 2, 3} to {1, 2, 3} = {f1, f2, f3, f4, f5, f6},
where

f1 :=


1 −→ 1

2 −→ 2

3 −→ 3

f2 :=


1 −→ 2

2 −→ 1

3 −→ 3

f3 :=


1 −→ 3

2 −→ 2

3 −→ 1

f4 :=


1 −→ 1

2 −→ 3

3 −→ 2

f5 :=


1 −→ 2

2 −→ 3

3 −→ 1

f6 :=


1 −→ 3

2 −→ 1

3 −→ 2

Then S3 is a group under composition ◦, i.e., (S3, ◦) is a group. Defining Sn similarly,
we have (Sn, ◦), in general, is a group, called the symmetry group on n letters.

4. Fix n ∈ Z+. Define θn := cos 2π
n
+ i sin 2π

n
. Then

θnn =

(
cos

2π

n
+ i sin

2π

n

)n

= cos(2π) + i sin(2π) = 1

We say θn is a primitive nth root of unity (nth root of unity because θnn = 1 and
primitive because θmn ̸= 1 if 0 < m < n). Now define Gn := {1, θn, θ2n, . . . , θn−1

n }.
Note that (Gn,×) is a group, called the group of nth roots of unity, where the
operation × is the multiplication of complex numbers.

5. Mm×n(R) := set of m×n real matrices, is a group under addition of matrices, with
identity as zero matrix and inverse as the negative of a matrix. However, Mm×n(R)
is not a group under multiplication of matrices, because m× n matrices cannot be
multiplied unless m = n. But Mn(R) := set of n × n real matrices, is also not
a group under multiplication because inverses do not exist in general. However,
GLn(R) := set of invertible n× n real matrices, is a group under multiplication of
matrices.
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Definition 3. A group (G, ∗) is called abelian or commutative if g1 ∗ g2 = g2 ∗ g1 ∀
g1, g2 ∈ G.

For example, Z,Q,R,C are abelian groups under addition and Q − {0},R − {0},C −
{0},Q−{0},R−{0} are abelian groups under multiplication, whereas Sn is not abelian
for n ≥ 3 (S1, S2 are abelian).

Definition 4. A group G is called finite if the number of elements in G is finite.

For example, Sn is finite ∀ n ≥ 1 and it has n! elements.

Definition 5. If G is a finite group, then the order of G, denoted by |G|, is defined to
be the number of elements of G.

Definition 6. Let G = {g1, g2, . . . , gn} be a finite group with g1 = e. The multiplication
table or group table of G is the n× n matrix whose (i, j)th entry is gi ∗ gj ∈ G.

For example, the group table of S3 is the matrix
f1 f2 f3 f4 f5 f6
f2 f1 f5 f6 f3 f4
f3 f6 f1 f5 f4 f2
f4 f5 f6 f1 f2 f3
f5 f4 f2 f3 f6 f1
f6 f3 f4 f2 f1 f5


1.2 Properties of groups

It is tiresome to keep writing the ∗ for the product in G, so from now on we shall write
the product a ∗ b as a · b or simply ab ∀a, b ∈ G.

Proposition 1 (Cancellation property). If G is a group and a, b, c ∈ G such that
ab = ac, then b = c.

Proof. We have,

ab = ac

=⇒ a−1(ab) = a−1(ac)

=⇒ (a−1a)b = (a−1a)c (using associativity)

=⇒ eb = ec

=⇒ b = c

A similar argument shows that ba = ca =⇒ b = c.

Proposition 2. Let g1, g2 ∈ G. Suppose g1g2 = e, then g2g1 = e.

Proof. We have,

g1g2 = e

=⇒ g2(g1g2) = g2e

=⇒ (g2g1)g2 = eg2

=⇒ g2g1 = e (using cancellation property)

Thus, if g1g2 = e, then g2 = (g1)
−1 and g1 = (g2)

−1.
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Proposition 3. If G is a group, then

1. G has a unique identity.

2. Every g ∈ G has a unique inverse g−1 ∈ G.

3. If g ∈ G, then (g−1)−1 = g.

4. For g, h ∈ G, (gh)−1 = h−1g−1.

Proof. 1. SupposeG has two identities e and e′. Then since e and e′ are both identities,
so ee = e = ee′ and hence by cancellation property, we have e = e′.

2. Suppose g has two inverses g1 and g2, then gg1 = e = gg2 and hence by cancellation
property, we have g1 = g2.

3. Since g−1 ∈ G, so g−1(g−1)−1 = e = g−1g, so by cancellation property, we have
(g−1)−1 = g.

4. We have,

(gh)(h−1g−1) = ((gh)h−1)g−1 (using associativity)

= (g(hh−1))g−1 (again using associativity)

= (ge)g−1 = gg−1 = e

□

1.3 Some exercises

1. Check whether the following are groups:

(i) (Z, ∗), with ∗ defined as a ∗ b = a− b ∀ a, b ∈ Z.
(ii) Z,Q,R under ∗, defined as a ∗ b = a+ b+ ab.

(iii) G =
{a

b
∈ Q : (a, b) = 1 and 5 | b

}
under addition.

(iv) G′ =
{a

b
∈ Q : (a, b) = 1 and 5 ∤ b

}
under addition.

Solution.

(i) Clearly, ∗ is a binary operation on Z. But 5, 3, 2 ∈ Z and

(5 ∗ 3) ∗ 2 = (5− 3)− 2 = 0 ̸= 4 = 5− (3− 2) = 5 ∗ (3 ∗ 2)

Therefore, ∗ is not associative, and hence (Z, ∗) is not a group. It can also be
checked that Z has no identity under ∗, because if there were one (say e), then
a− e = e = e− a, which is only possible when e = a = 0.

(ii) Clearly, for any a, b ∈ Z, a ∗ b = a + b + ab ∈ Z, i.e., ∗ is a binary operation on Z.
We also have a ∗ 0 = a = 0 ∗ a, i.e., 0 is an identity of (Z, ∗). Also, ∗ is associative
because

(a ∗ b) ∗ c = (a+ b+ ac) ∗ c = (a+ b+ ab) + c+ (a+ b+ ab)c

= a+ b+ c+ ab+ bc+ ca+ abc

= a+ (b+ c+ bc) + a(b+ c+ bc)

= a ∗ (b+ c+ bc) = a ∗ (b ∗ c)
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We see that

a ∗ b = 0 = b ∗ a =⇒ a+ b+ ab = 0 =⇒ b =
−a

1 + a
̸∈ Z ∀ a ∈ Z

Therefore, ∗ does not admit inverses and hence (Z, ∗) is not a group. For Q and
R, similar properties hold, but inverse does not exist for a = −1 and thus, (Q, ∗) is
not a group. However, (Q− {−1}, ∗) and (R− {−1}, ∗) are groups.

(iii) Clearly,
2

5
,
3

5
∈ G, but

2

5
+

3

5
= 1 ̸∈ G. Hence, (G,+) is not a group.

(iv) Let
a

b
,
c

d
∈ G′. Then

a

b
+

c

d
=

ad+ bc

bd
∈ G, because 5 ∤ b and 5 ∤ d, so 5 ∤ bd

and hence after reducing
ad+ bc

bd
in the simplest form (say p/q), 5 ∤ q. Therefore,

addition is a binary operation on G′. Also, any
a

b
∈ G′ is such that

a

b
+0 = 0+

a

b
= 0

with 0 =
0

1
∈ G′. Also, for any

a

b
, ∃ −a

b
∈ G′ such that

a

b
+

(
−a

b

)
=

−a

b
+

a

b
= 0.

Therefore, (G′,+) is a group. □

2. G is a finite group. Show that for every a ∈ G, there exists a positive integer n such
that an = e. (Note that an means a ∗ a ∗ · · · ∗ a (n times), where ∗ is the underlying
operation on the group.)

Solution. Choose a ∈ G and consider the elements e = a0, a1, a2, a3, a4, . . . of the group
G. Since G is finite, so we must have positive integers n and m (n ̸= m) such that
an = am. Assume without loss of generality (WLOG) that n > m. Then

an = am

=⇒ ana−m = ama−m

=⇒ an−m = e (using associativity)

where n−m = n′ (say) is a positive integer so that an
′
= 1. Note that a−m := (a−1)m.□

3. G is a finite group. Show that there exists a positive integer n such that an = e
for all a ∈ G. (This is different from the previous problem in the sense that the previous
problem asks to prove that there exists n for a given a ∈ G, i.e., the choice of n might
vary depending on the choice of a, but here it asks to prove that there exists one n that
works for any a ∈ G.)

Solution. By the previous problem, for any a ∈ G, there exists a positive integer nai

(n depending on a) such that ana = e. Define n =
∏

ai∈G
nai , where there are only a finite

number of nai ’s (say r) because G is a finite group. We claim that this n works, i.e.,
an = e for all a ∈ G. This is because

an = a
∏

nai = ana1na2 ···nar = (ana1 )na2 ···nar = ena2 ···nar = e

□
4. G is a finite group. Suppose a ∈ G and m,n are positive integers such that an = e
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and n divides m, then am = e.

Solution. Since n divides m, so m = nk for some positive integer k. Then

am = ank = ank = ek = e

□
5. Show that any group G of order ≤ 5 is abelian.

Solution. We consider the following cases: (we denote the identity by e)
Case 1: |G| = 1, then let G = {e}, which is abelian.
Case 2: |G| = 2, then let G = {e, a} (with e ̸= a), which is abelian because ea = ae, by
definition.
Case 3: |G| = 3, then let G = {e, a, b} (with e, a, b mutually distinct). Then ea = ae and
eb = be, by definition, i.e., e commutes mutually with a and b. To prove that a and b
commute, we see that ab should also be an element of G. Thus, ab = e or ab = a or ab = b.
By cancellation property, ab = a = ae =⇒ b = e and ab = b = eb =⇒ a = e, but
e, a, b are mutually distinct. Hence, ab = e and so by Proposition 2, we have ba = e = ab.
Thus, a and b commute and hence G = {e, a, b} is abelian.
Case 4: |G| = 4. If G is not abelian, then ∃ a, b ∈ G such that ab ̸= ba. Then e, a, b ∈ G.
Also, e ̸= a and e ̸= b, because if e = a, then ab = eb = be = ba and similarly if e = b,
then ab = ba. Furthermore, a ̸= b, because if a = b, then ab = a2 = ba. We claim that the
other element is ab, and it is mutually distinct from e, a, b. It is clear from the argument
in Case 3 that ab is mutually distinct from e, a, b. So we conclude that G = {e, a, b, ab}.
But then, by the same argument, ba is mutually distinct from e, a, b and hence ba = ab,
a contradiction. Therefore, G is abelian.
Case 5: |G| = 5. If G is not abelian, then ∃ a, b ∈ G such that ab ̸= ba. Then by
the previous argument, we must have G = {e, a, b, ab, ba}. We claim that aba = b and
bab = a. If aba = e, then (ab)a = e =⇒ ab = a−1 and a(ba) = e =⇒ ba = a−1,
i.e., ab = ba, a contradiction. If aba = a = ea, then by cancellation property, we have
ab = e (but ab and e are distinct). Also if aba = ab = abe, then by cancellation property,
we have a = e (but a and e are distinct). Similarly, aba = ba gives a = e, which is not
possible. Therefore, aba = b and similarly, bab = a. Also, we claim that a2 = b2. This
is true because aba = b =⇒ abab = b2 and bab = a =⇒ abab = a2, i.e., a2 = b2.
Now, we should have a2 ∈ G, but a2 = a =⇒ a = e, a2 = b =⇒ b2 = b =⇒ b = e,

a2 = ab =⇒ a = b and a2 = ba =⇒ a = b. Therefore, a2 = e
?
= b2. But

aba = b =⇒ aaba = ab =⇒ a2ba = ab =⇒ eba = ab =⇒ ba = ab, a contradiction.
Therefore, G is abelian.

1.4 Subgroups

Definition 7. A nonempty subset, H, of a group G is called a subgroup of G if

1. H is closed under the binary operation of G, i.e., a, b ∈ H =⇒ ab ∈ H.

2. The identity element e ∈ H.

3. If a ∈ H, then it’s inverse a−1 ∈ H.

For example, Z is a subgroup of Q under addition, Q is a subgroup of R or C under
addition, Q− {0} is a subgroup of R− {0} or Q− {0} under multiplication, Z− {0} is
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not a subgroup of Q− {0} under multiplication, since Z− {0} does not admit inverses.
Is H = {2x : x ∈ Z} a subgroup of (Z,+)? Clearly, H is closed under +, since for
any 2a, 2b ∈ H, 2a + 2b = 2(a + b) ∈ H. Also, the identity 0 = 2 × 0 ∈ H and the
inverse of any element 2a ∈ H is −2a ∈ H. Thus, H is a subgroup of (Z,+). However,
H ′ = {2x + 1 : x ∈ Z} is not a subgroup of (Z,+), because it is neither closed nor
the identity 0 is odd. Also, {3x : x ∈ Z} is a subgroup of (Z,+). More generally,
nZ := {nx : x ∈ Z} is a subgroup of (Z,+) ∀ n ∈ Z. Also, we have the following
theorem:

Theorem 1. Every subgroup of Z is of the form nZ for some non-negative integer n.

Proof. Let H be a subgroup of Z. If H = {0}, then H = 0Z = {0x : x ∈ Z} = {0}.
Suppose that H ̸= {0}. So H contains an integer a ̸= 0. In fact, H contains an integer
a > 0. This is because if a > 0, we are done and if a < 0, then −a > 0, where −a ∈ H
(because H is a subgroup). Let n be the smallest positive integer contained in H. We
claim that H = nZ. So, let m ∈ H and assume m > 0. By the choice of n, m ≥ n. Then,

m = nq + r, q ∈ Z, 0 ≤ r < n

=⇒ m− nq = r

Note that n ∈ H, so −n ∈ H and hence

−nq = q(−n) = (−n) + (−n) + · · ·+ (−n)︸ ︷︷ ︸
q times

∈ H.

Therefore, m + (−nq) = m − nq = r ∈ H. It is not possible that 0 < r < n, since n
was chosen to be the smallest positive integer contained in H. Therefore, only r = 0 is
possible and so m = nq =⇒ m ∈ nZ, i.e., every positive integer in H is a multiple of n.
Also, if m ∈ H and m < 0, we consider −m > 0 and −m ∈ H. Then −m = nq for some
q ∈ Z, i.e., m = n(−q). Thus, every element of H is a multiple of n. Hence, H ⊆ nZ.
But clearly, nZ ⊆ H because H is a subgroup and n ∈ H. Therefore, H = nZ.

Remark: Every group G has two trivial subgroups {e} and G.

1.5 Types of groups

Definition 8. Let G be a group and let a ∈ G. The subgroup generated by a is the
subgroup ⟨a⟩ := {an : n ∈ Z}.

Note: If a subgroup H of G contains a, then an ∈ H for every n ∈ Z. So, ⟨a⟩ ⊆ H.
Therefore, ⟨a⟩ is the smallest subgroup of G containing a.

Definition 9. A group G is called cyclic if ∃ an element a ∈ G such that ⟨a⟩ = G. We
say that G is generated by a or a is a generator of G.

For example, (Z,+) is cyclic since ⟨1⟩ = Z. Also, ⟨−1⟩ = Z. We say that 1 and −1 both
are generators of Z. But 2 is not a generator of Z, since ⟨2⟩ = 2Z ̸= Z. In fact, no integer
other than 1 and −1 is a generator of Z.

Definition 10. The order of a, denoted by ord(a), is the order of ⟨a⟩ if ⟨a⟩ is finite.
Otherwise we say that the order of a is infinite.
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For example, ord(e) = 1 for any group G, since ⟨e⟩ = {e}. Also, for G = Z, ord(a) = ∞
if a ̸= 0. Recall S3 = {f1, f2, f3, f4, f5, f6}. From the group table of S3, we have

⟨f1⟩ = {f1}, ⟨f2⟩ = {f1, f2}, ⟨f3⟩ = {f1, f3}, ⟨f4⟩ = {f1, f4}, ⟨f5⟩ = ⟨f6⟩ = {f1, f5, f6},
and hence,

ord(f1) = 1, ord(f2) = ord(f3) = ord(f4) = 2 and ord(f5) = ord(f6) = 3.

The following theorem is obvious.

Theorem 2. Let G be a finite group of order n. Then G is cyclic if and only if, G
contains an element of order n.

Theorem 3. Suppose G contains no subgroups different from {e} and G. Then G is
cyclic.

Proof. If G = {e}, then it is cyclic. Assume that G ̸= {e}. Let a ∈ G, a ̸= e. Then
⟨a⟩ ̸= {e}. By hypothesis, G contains no subgroups different from {e} and G, and thus
⟨a⟩ = G. So, G is cyclic.

Definition 11. The center of a group G, denoted by Z(G), is defined as

Z(G) := {g ∈ G : ag = ga for every a ∈ G}
Proposition 4. If G is a group, then

1. Z(G) is a subgroup of G.

2. If G is abelian, then Z(G) = G.

Proof. 1. Let g1, g2 ∈ Z(G). Now, for any a ∈ G, we have

(g1g2)a = g1(g2a) = g1(ag2) = (g1a)g2 = (ag1)g2 = a(g1g2)

Thus, g1g2 ∈ Z(G), i.e., Z(G) is closed under the binary operation of G. Also,
ea = ae = a ∀ a ∈ G, i.e., e ∈ Z(G). Now, for g ∈ Z(G) and any a ∈ G, we also
have

g−1a = (a−1g)−1 = (ga−1)−1 = ag−1

Therefore, g−1 ∈ Z(G). Hence, Z(G) is a subgroup of G.

2. Clearly, Z(G) ⊆ G. Now since G is abelian, so for any x ∈ G, xa = ax ∀ a ∈ G,
i.e., x ∈ Z(G). Therefore, G ⊆ Z(G) and hence, Z(G) = G if G is abelian.

Definition 12. The centralizer of a ∈ G, denoted by C(a), is defined as

C(a) := {g ∈ G : ag = ga}
Proposition 5. If G is a group and a ∈ G, then

1. C(a) is a subgroup of G.

2. Z(G) ⊆ C(a) ∀ a ∈ G.

3. If G is abelian, then C(a) = G = Z(G) ∀ a ∈ G.

Proof. 1. The proof of this is similar to that of Proposition 4, with a fixed here.

2. Let x ∈ Z(G), then xy = yx ∀ y ∈ G. Therefore, for any y = a ∈ G, xa = ax, i.e.,
Z(G) ⊆ C(a) ∀ a ∈ G.

3. Clearly, C(a) ⊆ G. Now since G is abelian, so for any x ∈ G, xa = ax ∀ a ∈ G, i.e.,
x ∈ Z(G) ⊆ C(a). Therefore, G ⊆ C(a) and hence, C(a) = G = Z(G) ∀ a ∈ G.
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1.6 Group homomorphisms and examples

Definition 13. A homomorphism of groups is a function φ : G → G′ such that

φ(ab) = φ(a)φ(b) ∀ a, b ∈ G

Given below are some examples.

1. Consider φ : Z → Z defined by φ(a) = na. Then φ(a + b) = n(a + b) and
φ(a) + φ(b) = na + nb = n(a + b) = φ(a + b) ∀a, b ∈ φ and thus, φ is a group
homomorphism.

2. Now consider φ : Z → {1,−1} (Note that {1,−1} is group under multiplication.
Also note that {1,−1} is a subgroup of Q− {0}.) defined by

φ(a) =

{
1, if a is even

−1, if a is odd

We want to check if φ(a + b) = φ(a)φ(b) or not. If a and b have the same parity,
then a + b is even and hence φ(a + b) = 1 = φ(a)φ(b). If a and b have different
parity, then a+ b is odd and hence φ(a+ b) = −1 = 1 · (−1) = (−1) · 1 = φ(a)φ(b).
Therefore, φ is a group homomorphism.

3. We consider another example with the function φ : Z → {1,−1} defined by

φ(a) =

{
−1, if a is even

1, if a is odd

For 3, 4 ∈ Z, φ(3 + 4) = φ(7) = 1 whereas, φ(3)φ(4) = 1 · (−1) = −1. Therefore,
φ is not a group homomorphism.

4. Consider φ : GLn(R) → R − {0} defined as φ(A) = determinant of A. Therefore,
φ is a group homomorphism by the well known property of determinants that
det(AB) = det(A) det(B).

5. Now consider an arbitrary group G and fix an element a ∈ G, and consider the
function φ : Z → G defined by φ(n) = an. Then

φ(m+ n) = am+n ?
= am · an = φ(m)φ(n)

and hence φ is a group homomorphism.

6. Consider φ : G → G, where G is an abelian group, defined by φ(a) = a2. We want
to check if φ is a group homomorphism. We have,

φ(ab) = (ab)2 = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a2b2 = φ(a)φ(b)

and hence φ is a group homomorphism.
Note: In general, (ab)2 ̸= a2b2. Thus, φ is not a group homomorphism in general,
when G is not abelian. Recall S3 = {f1, f2, f3, f4, f5, f6}, which is not abelian, and
let φ : S3 → S3 defined by φ(fi) = f 2

i . From the group table of S3, we have

φ(f2f3) = φ(f5) = f 2
5 = f6

whereas
φ(f2)φ(f3) = f 2

2 f
2
3 = f1f1 = f1

and hence φ is not a group homomorphism.
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1.7 Properties of group homomorphisms

Proposition 6. Let φ : G → G′ be a group homomorphism. Then

1. φ(eG) = eG′ .

2. If a ∈ G, then φ(a−1) = (φ(a))−1.

Proof. 1. Since eG = eGeG, so φ(eG) = φ(eGeG) = φ(eG)φ(eG). Thus, by cancellation
property in G′, we get φ(eG) = eG′ .

2. Let a ∈ G, then aa−1 = eG and so

φ(aa−1) = φ(eG) = eG′

=⇒ φ(a)φ(a−1) = eG′

=⇒ φ(a−1) = (φ(a))−1

Recall the function φ : Z → {1,−1} defined by

φ(a) =

{
−1, if a is even

1, if a is odd

Here, eZ = 0 is even, so φ(eZ) = −1 and e{1,−1} = 1 is odd, so φ(e{1,−1}) = 1 ̸= φ(eZ) and
hence φ is not a group homomorphism.
Let φ : G → G′ is a group homomorphism. Then we have the following definitions.

Definition 14. The kernel of φ, Ker(φ), is defined as

Ker(φ) = {a ∈ G : φ(a) = eG′} ⊆ G

Definition 15. The image of φ, im(φ), is defined as

im(φ) = {φ(a) : a ∈ G} ⊆ G′

Proposition 7. For any group homomorphism φ : G → G′,

1. Ker(φ) is a subgroup of G.

2. im(φ) is a subgroup of G′.

Proof. 1. For any a, b ∈ Ker(φ), we have φ(a) = φ(b) = eG′ . Since φ is a group
homomorphism, so φ(ab) = φ(a)φ(b) = eG′eG′ = eG′ and hence, ab ∈ Ker(φ).
Therefore, φ is closed under the binary operation of G. Also by Proposition 6,
φ(eG) = e′G and hence eG ∈ Ker(φ). Now, a ∈ Ker(φ) =⇒ φ(a) = eG′ and again
by Proposition 6, φ(a−1) = (φ(a))−1 = (eG′)−1 = eG′ , i.e., a−1 ∈ Ker(φ) for all
a ∈ Ker(φ). Therefore, Ker(φ) is a subgroup of G.

2. Consider φ(a), φ(b) ∈ im(φ) with a, b ∈ G. Then by the definition of group homo-
morphism, φ(a)φ(b) = φ(ab) ∈ im(φ). Also, e′G = φ(eG) ∈ im(φ). We also have
φ(a−1) = (φ(a))−1 ∈ im(φ) for all φ(a) ∈ im(φ). Hence, im(φ) is a subgroup of G.

We see some examples given below:
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1. Consider the group homomorphism φ : Z → Z defined by φ(a) = na. Then
Ker(φ) = {a ∈ Z : na = 0} = {0} and im(φ) = {na : a ∈ Z} = nZ are both
subgroups of Z.

2. Consider the determinant group homomorphism φ : GLn(R) → R− {0} defined as
φ(A) = det(A). Then, Ker(φ) = {A ∈ GLn(R) : det(A) = 1}, which is called the

special linear group SLn(R), and im(φ) = {det(A) : A ∈ GLn(R)}
?
= R− {0}.

3. Consider an arbitrary group G and fix an element a ∈ G, and consider the function
φ : Z → G defined by φ(n) = an. Then, Ker(φ) = {n ∈ Z : an = eG} and
im(φ) = {φ(n) : n ∈ Z} = {an : n ∈ Z} = ⟨a⟩.
Remark: Since Ker(φ) is a subgroup of Z, so by Theorem 1, Ker(φ) = bZ for some
non-negative integer b. Note that b is related to ord(a), where

(i) If an = eG for some positive integer n, then ord(a) is the smallest positive
integer m such that am = eG

(ii) If an ̸= eG for any positive integer n, then ord(a) = ∞.

If b = 0, then Ker(φ) = {0} =⇒ ord(a) = ∞. If b > 0, then ord(a) = b.

1.8 Group isomorphisms

Let φ : G → G′ be a group homomorphism.

Definition 16. φ is 1-1 (or injective) if φ(a) = φ(b) =⇒ a = b, or equivalently
a ̸= b =⇒ φ(a) ̸= φ(b).

Definition 17. φ is onto (or surjective) if im(φ) = G′.

Definition 18. φ is bijective if it is both injective and surjective.

Proposition 8. φ is injective if and only if Ker(φ) = {eG}.

Proof. Suppose φ is injective. Let a ∈ Ker(φ). Then

φ(a) = eG′ = φ(eG) =⇒ a = eG

and hence Ker(φ) = {eG}. For the other direction, suppose Ker(φ) = {eG}. Then for
any a, b ∈ G,

φ(a) = φ(b) =⇒ φ(a)(φ(b))−1 = eG′ =⇒ φ(a)φ(b−1) = eG′ =⇒ φ(ab−1) = eG′

Therefore, ab−1 ∈ Ker(φ) = {eG}. So ab−1 = eG and hence a = b, i.e., φ is injective.

Definition 19. An isomorphism of groups is a group homomorphism φ : G → G′ such
that φ is 1-1 and onto (i.e., φ is bijective).

Proposition 9. If φ : G → G′ is a group isomorphism, then φ−1 : G′ → G is also a
group isomorphism.

Proof. Since φ is a bijection, so we have an inverse mapping φ−1 : G′ → G. Also,
for all g ∈ G, g′ ∈ G′, φ(g) = g′ ⇐⇒ φ−1(g′) = g. Now suppose g1, g2 ∈ G and
g′1 = φ(g1), g

′
2 = φ(g2) ∈ G′ and hence

φ(g1g2) = φ(g1)φ(g2) = g′1g
′
2

11



So,
φ−1(g′1g

′
2) = g1g2 = φ−1(g′1)φ

−1(g′2)

Therefore. φ−1 is a bijection and a group homomorphism, hence an isomorphism.

Consider the group of fourth roots of unity G1 = {1, i,−1,−i}, where i =
√
−1, and

the group G2 = {e, a, a2, a3}. (We say groups G1 and G2 are isomorphic if there is a
group isomorphism φ : G1 → G2.) Define φ : G1 → G2 such that φ(1) = e, φ(i) = a,
φ(−1) = a and φ(−i) = a3. This is a bijection by the definition of φ. One can check
that φ(ab) = φ(a)φ(b) ∀ a, b ∈ G1 and hence G1 and G2 are isomorphic.

Theorem 4. If groups G and G′ are isomorphic, then

1. G is abelian if and only if G′ is abelian.

2. G is cyclic if and only if G′ is cyclic.

Proof. Let φ : G → G′ is an isomorphism.

1. Suppose G is abelian. Consider any g′1, g
′
2 ∈ G′. Let g′1 = φ(g1) and g′2 = φ(g2) for

some g1, g2 ∈ G. Then,

g′1g
′
2 = φ(g1)φ(g2) = φ(g1g2) = φ(g2g1) = φ(g2)φ(g1) = g′2g

′
1

and hence G′ is abelian.

Now suppose G′ is abelian. By Proposition 9, we have φ−1 : G′ → G is an iso-
morphism. Consider any g1, g2 ∈ G. Let g1 = φ−1(g′1) and g2 = φ−1(g′2) for some
g′1, g

′
2 ∈ G′. Then,

g1g2 = φ−1(g′1)φ
−1(g′2) = φ−1(g′1g

′
2) = φ−1(g′2g

′
1) = φ−1(g′2)φ

−1(g′1) = g2g1

and hence G is abelian.

2. Suppose G is cyclic. Consider any g′ ∈ G′, then g′ = φ(g) for some g ∈ G. Since
G is cyclic, so g = an for some n ∈ Z. Using the definition of homomorphism, we
have

g′ = φ(g) = φ(an) = (φ(a))n

So, g′ ∈ ⟨φ(a)⟩ and hence, G′ ⊆ ⟨φ(a)⟩. By definition, ⟨φ(a)⟩ ⊆ G′. Therefore,
⟨φ(a)⟩ = G′, i.e., G′ is cyclic. A similar argument proves the other direction.

2 Normal subgroups

Definition 20. Let G be a group. A subgroup H of G is normal if ghg−1 ∈ H for every
g ∈ G and h ∈ H.

Theorem 5. If G is abelian, then every subgroup of G is normal.

Proof. For every g ∈ G, h ∈ H, ghg−1 = gg−1h = h ∈ H.

Recall S3 = {f1, f2, f3, f4, f5, f6}. Then the group H = {f1, f2} is not normal in S3.
This is because f 2

3 = f1 =⇒ f3 = f−1
3 and hence

f3f2f
−1
3 = f3f2f3 = f4 ̸∈ H

12



2.1 Important examples of normal subgroups

Proposition 10. For any group homomorphism φ : G → G′, Ker(φ) is a normal sub-
group of G.

Proof. We have already seen in Proposition 7 that Ker(φ) is a subgroup of G. To prove
that it is normal in G, take any g ∈ G and h ∈ Ker(G). Then,

φ(ghg−1) = φ(g)φ(h)φ(g−1) = φ(g)eG′(φ(g))−1 = φ(g)(φ(g))−1 = eG′

and hence ghg−1 ∈ Ker(G), i.e., Ker(φ) is a normal subgroup of G.

Proposition 11. The center, Z(G) is a normal subgroup of G.

Proof. We have already seen in Proposition 4 that Z(G) is a subgroup of G. To prove that
it is normal in G, take any g ∈ G and h ∈ Z(G). We need to prove that ghg−1 ∈ Z(G).
We have,

ghg−1 = gg−1h = h ∈ Z(G)

and hence Z(G) is a normal subgroup of G.

2.2 Some exercises

1. Describe all group homomorphisms from Z to Z.

Solution. Suppose that φ : Z → Z is a group homomorphism. Then, we should have
φ(0) = 0. Suppose that φ(1) = a ∈ Z. Then φ(1 + 1) = φ(1) + φ(1) = 2a. In general,
for all n ∈ N, we have

φ(n) = φ(1) + φ(1) + · · ·+ φ(1) (n times) = na

By a property of group homomorphism, we have φ(−n) = −φ(n) = −na for all n ∈ N.
Therefore, for all n ∈ Z, we have

φ(n) = na = nφ(1)

This means that φ is determined by φ(1), i.e., the group homomorphisms from Z to Z
are determined by the image of 1, which can be any integer. □

2. Which of these homomorphisms φa : Z → Z are isomorphisms? (Here, φa : Z → Z is
such that φa(1) = a ∈ Z.)

Solution. For |a| ≥ 2, φa(n) = an for all n ∈ Z. Hence, φa is injective, but not
surjective because 1 is not in the image of φ(a). Also, φ0 (defined by φ0(n) = 0 for
all n ∈ Z) is not an injection and hence not an isomorphism. However, φ1 (defined by
φ1(n) = n) and φ−1 (defined by φ−1(n) = −n) are isomorphisms. □
Summary: Every group homomorphism from Z to Z is one of the homomorphisms
{φa, a ∈ Z}. φa is an isomorphism ⇐⇒ a = 1 or a = −1. φa is injective ⇐⇒ a ̸= 0
(note that this satisfies Proposition 8). φa is surjective ⇐⇒ a = 1 or a = −1.

3. Let G be a group and let a ∈ G. Suppose that ord(a) = r. If an = e for some
positive integer n, then show that r divides n.

13



Solution. By definition, since r is the smallest positive integer such that ar = e, the
identity element, so we have n > r. Therefore, n = qr + s for s < r. So,

e = an = aqr+s = aqr · as = (ar)q · as = e · as = as

which is a contradiction for s > 0 since r is the smallest positive integer such that ar = e.
Therefore, s = 0 and hence n = qr, i.e., r | n. □
Alternative: Consider the homomorphism φ : Z → G given by φ(m) = am (see Section
1.6). Then note that Ker(φ) = rZ. Since an = e, so n ∈ Ker(φ) = rZ. This implies that
n is a multiple of r, i.e., r divides n. □

4. Suppose φ : G → G′ is a group homomorphism and a ∈ G. Let ord(a) = m.
Then prove that ord(φ(a)) divides m.

Solution: Since ord(a) = m, so am = eG. This gives (φ(a))m = φ(am) = φ(eG) = eG′ .
Therefore, by the previous problem, we have, ord(a) divides m. □
Note: In particular, if φ : G → G′ is a group homomorphism and a ∈ G has order p,
where p is a prime, then φ has order 1 or p.

2.3 Equivalence relations and equivalence classes

Let S be a set. An equivalence relation on S is a relation, denoted by ∼, satisfying:
(i) a ∼ a for any a ∈ S
(ii) a ∼ b =⇒ b ∼ a for any a, b ∈ S
(iii) a ∼ b, b ∼ c =⇒ a ∼ c for any a, b, c ∈ S.

For example,
(1) The relation ∼ defined by a ∼ b if 4 | a− b is an equivalence relation on Z.
(2) Let G be a group and H be a subgroup of G. Let a, b ∈ G. We define a ∼ b if
a−1b ∈ H. Clearly, a ∼ a because a−1a = e ∈ G. Also,

a ∼ b =⇒ a−1b ∈ H =⇒ (a−1b)−1 ∈ H =⇒ b−1a ∈ H =⇒ b ∼ a

Now,

a ∼ b, b ∼ c =⇒ a−1b ∈ H, b−1c ∈ H =⇒ (a−1b)(b−1c) ∈ H =⇒ a−1c ∈ H =⇒ a ∼ c

Therefore, ∼ is an equivalence relation on G.

An equivalence relation on a set S partitions the set into equivalence classes. For a ∈ S,
the equivalence class of a is defined as

[a] = {b ∈ S : a ∼ b}
In the previous examples,
(1) The equivalence class of 5 is

[5] = {b ∈ Z : 5 ∼ b} = {b ∈ Z : 4 | 5− b} = 4Z+ 1

(2) The equivalence class of a ∈ G is

[a] = {b ∈ G : a ∼ b} = {b ∈ G : a−1b ∈ H} = {b ∈ G : b = ah for some h ∈ H}
= {ah : h ∈ H} =: aH

(We similarly define Ha := {ha : h ∈ H}.)
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2.4 Cosets and Lagrange’s Theorem

Definition 21. If H is a subgroup of G, the left cosets of H are subsets aH, a ∈ G and
the right cosets of H are subsets Ha, a ∈ G.

If H is a subgroup of a group G and for a, b ∈ G, we define an equivalence relation
a ∼ b if a−1b ∈ H, then the equivalence classes are simply the left cosets of H. This
means that G is the disjoint union of left cosets.
Note: aH and Ha are just sets and have no further structure.

Proposition 12. Let H be a subgroup of a finite group G and let a ∈ G. Then the
number of elements of aH is equal to |H|.

Proof. Consider the mapping f : H → aH given by h
f7−→ ah. Then f is injective because

for h1, h2 ∈ H, we have,

f(h1) = f(h2) =⇒ ah1 = ah2 =⇒ h1 = h2

Also, f is clearly surjective because for every ah ∈ aH, there exists h ∈ H such that
f(h) = ah. Therefore, f is bijective and hence the number of elements of aH is equal
to |H|. (We shall write |aH| = |H|, where |aH| denotes the cardinality of the set aH,
whereas |H| denotes the cardinality of the group H.)

Theorem 6 (Lagrange’s theorem). If H is a subgroup of a finite group G, then |H|
divides |G|.

Proof. Let n be the number of left cosets ofH, say a1H = H (a1 = e), a2H, a3H, . . . , anH.
Then

G =
⊔

1≤i≤n

aiH

By Proposition 12,

|eH| = |a2H| = |a3H| = · · · = |anH| = |H|,

and hence
|G| =

∑
1≤i≤n

|aiH| =
∑

1≤i≤n

|H| = n|H|

which gives |H| divides |G|.

Definition 22. The number of left cosets of H in G is called the index of H in G; it is
denoted by [G : H].

Then as in the proof of the Lagrange’s theorem, we have the following counting
formula:

|G| = [G : H]|H|

Corollary 6.1. If G is a finite group and a ∈ G, then ord(a) divides |G|.

Proof. Consider the cyclic subgroup ⟨a⟩ of G, generated by a. Clearly, aord(a) = e, so
⟨a⟩ at most ord(a) elements. Also, ⟨a⟩ cannot be fewer than ord(a) elements because if
ai = aj for some integers 0 ≤ i < j < ord(a), then aj−i = e for 0 < j − i < ord(a), which
contradicts the meaning of ord(a). Therefore, ⟨a⟩ has exactly ord(a) elements and since
⟨a⟩ is a subgroup of G, by Lagrange’s Theorem, ord(a) divides G.
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Corollary 6.2. If G is a finite group and a ∈ G, then a|G| = e.

Proof. By Corollary 6.1, ord(a) divides |G|, so |G| = m·ord(a) for somem ∈ Z. Therefore,

a|G| = am·ord(a) =
(
aord(a)

)m
= em = e.

Corollary 6.3. If G is a finite group whose order is a prime p, then G is cyclic.

Proof. Let a ∈ G \ {e}. Then by Lagrange’s theorem, we have ord(a) divides |G| = p, so
ord(a) = 1 or p. Since a ̸= a, so ord(a) ̸= 1. Therefore, ord(a) = |G| and hence ⟨a⟩ = G,
i.e., G is cyclic.

For m ≥ 1, ϕ(m) denotes the number of positive integers not exceeding m that are
relatively prime to m.

Corollary 6.4. (Euler) If n ∈ Z+ and a is relatively prime to n, then aϕ(n) ≡ 1 (mod n).

Proof. The set of positive integers not exceeding n that are relatively prime to n is
denoted by (Z/nZ)× and is called the group of units modulo n. We shall prove that this
set forms a group under multiplication mod n.

Let a, b ∈ (Z/nZ)×, then gcd(a, n) = gcd(b, n) = 1, which implies gcd(ab, n) = 1.
Therefore, ab ∈ (Z/nZ)× and hence the set is closed under multiplication. Associativity
in (Z/nZ)× under multiplication follows from that in integers. Since 1 is relatively prime
to n, so 1 ∈ (Z/nZ)× and also for any a ∈ (Z/nZ)×, 1a = a1 = a. Thus, 1 is the identity
element. Also for any a ∈ (Z/nZ)×, since gcd(a, n) = 1, there exists x, y ∈ Z such that
ax + ny = 1. Taking mod n, we get ax ≡ 1 (mod n) and hence x is the inverse of
a. Thus, every element in (Z/nZ)× has an inverse. Thus, (Z/nZ)× is a group and also
ϕ(n) = |(Z/nZ)×|, by the definition of (Z/nZ)×.

Applying Corollary 6.3, we have

aϕ(n) = a|(Z/nZ)×| ≡ 1 (mod n).

The following corollary then directly follows:

Corollary 6.5 (Fermat). If p is a prime and a is any integer, then ap ≡ a (mod p).

2.5 A counting principle

Let us generalize the notions of left and right cosets. Let H,K be subgroups of a group
G, we write

HK = {hk | h ∈ H, k ∈ K}.
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