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Problem 1:
Determine the primes p such that the matrix 1 2 0

0 3 −1
−2 0 2


is invertible, when its entries are considered to be in Fp.

Solution 1:
Here, we have

detA = 1 det

[
3 −1
0 2

]
− 2 det

[
0 −1
−2 2

]
+ 0

= 6− 2(−2)

= 10

where 10 is the symbol that refers to 1 + 1 + · · · 1 (10 times).
We know that a square matrix over any field is invertible iff its determinant
is non-zero (as a member of the field).
Now, 10 = 0 in Fp iff p | (10− 0) = 10 i.e., iff p = 2 or 5 in Fp.
Thus, for any prime p in Fp except for 2 = 1 + 1 and 5 = 1 + 1 + 1 + 1 + 1
in Fp, the given matrix is invertible. �

Problem 2:
Solve completely the systems of linear equations AX = 0 and AX = B,
where

A =

 1 1 0
1 0 1
1 −1 −1

 , and B =

 1
−1
1


(a) in Q, (b) in F2, (c) in F3, (d) in F7.

Solution 2:
(a) Consider the augmented matrix

[A|0] =

 1 1 0 0
1 0 1 0
1 −1 −1 0


Using R2 → R2 −R1 and R3 → R3 −R1, we get the matrix 1 1 0 0

0 −1 1 0
0 −2 −1 0
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Using R3 → R3 − 2R2, we get the matrix 1 1 0 0
0 −1 1 0
0 0 −1 0


Using R3 → −R3 and R2 → −R2, we get the matrix 1 1 0 0

0 1 −1 0
0 0 1 0


Using R2 → R2 +R3, we get the matrix 1 1 0 0

0 1 0 0
0 0 1 0


Using R1 → R1 −R2, we get the matrix (with A in RREF) 1 0 0 0

0 1 0 0
0 0 1 0



Thus, the solution to the system AX = 0 with A in Q is X =

 0
0
0

.

Now consider the augmented matrix

[A|B] =

 1 1 0 1
1 0 1 −1
1 −1 −1 1


Using same row operations as above, we get the matrix (with A in RREF) 1 0 0 3

0 1 0 −2
0 0 1 4



Thus, the solution to the system AX = B with A,B in Q is X =

 3
−2
4

.

(b) In F2, the operations + and · are defined by
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+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

Consider the augmented matrix

[A|0] =

 1 1 0 0
1 0 1 0
1 −1 −1 0


Using R2 → R2 +R1 and R3 → R3 +R1, we get the matrix 1 1 0 0

0 1 1 0
0 0 −1 0


Using R2 → R2 +R3, we get the matrix 1 1 0 0

0 1 0 0
0 0 −1 0


Using R1 → R1 +R2 and replacing −1 by 1 in F2, we get the matrix 1 0 0 0

0 1 0 0
0 0 1 0


Thus, the solution to the system AX = 0 with A in F2 is X =

 0
0
0

.

Now consider the augmented matrix

[A|B] =

 1 1 0 1
1 0 1 −1
1 −1 −1 1


Using same row operations as above, we get the matrix (with A in RREF) 1 0 0 1

0 1 0 0
0 0 1 0


Thus, the solution to the system AX = B with A,B in F2 is X =

 1
0
0

.

(c) Since all the row operations used in (a) of the form Ri → Ri +λRj, i 6= j
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are such that λ is an integer. So, for all such row operations, we can replace
λ by λ (mod 3) in F3. So, we can replace all the entries in [A|B] (with A in
RREF) with their values mod 3, to get [A|B] (with A in RREF) in F3.
So the augmented matrix [A|0], with A in RREF is 1 0 0 0

0 1 0 0
0 0 1 0


Thus, the solution to the system AX = 0 with A in F3 is X =

 0
0
0

.

Also, the augmented matrix [A|B], with A in RREF is 1 0 0 0
0 1 0 1
0 0 1 1


Thus, the solution to the system AX = B with A,B in F2 is X =

 0
1
1

.

(d) Since all the row operations used in (a) of the form Ri → Ri+λRj, i 6= j
are such that λ is an integer. So, for all such row operations, we can replace
λ by λ (mod 7) in F7. So, we can replace all the entries in [A|B] (with A in
RREF) with their values mod 7, to get [A|B] (with A in RREF) in F7.
So the augmented matrix [A|0], with A in RREF is 1 0 0 0

0 1 0 0
0 0 1 0


Thus, the solution to the system AX = 0 with A in F7 is X =

 0
0
0

.

Also, the augmented matrix [A|B], with A in RREF is 1 0 0 3
0 1 0 5
0 0 1 4


Thus, the solution to the system AX = B with A,B in F2 is X =

 3
5
4

. �

Problem 3:
Let Fp be a prime field, and let V = F2

p. Prove:
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(a) The number of bases of V is equal to the order of the general linear
group GL2(Fp).

(b) The order of the general linear group GL2(Fp) is p(p+ 1)(p− 1)2, and
the order of the special linear group SL2(Fp) is p(p+ 1)(p− 1).

Solution 3:

(a) Consider the map φ from the ordered bases of V = F2
p to GL2(Fp) given

by φ(v1, v2) = [v1, v2]. Clearly, the map is injective. Also, the map is
surjective, since the columns of an invertible matrix form an ordered
basis. Thus, φ is a bijection and hence the number of bases of V is
equal to the order of the general linear group GL2(Fp).

(b) Let M =

[
a b
c d

]
be a matrix in GL2(Fp). So, M is invertible iff

ad 6= bc. If a, b, c, d are all non-zero, we can fix a, b, c arbitrarily and d
can be anything except a−1bc. This gives us (p − 1)3(p − 2) matrices.
If exactly one of the entries is 0, then the other three entries can be
anything non-zero, for a total of 4(p − 1)3 matrices. Now, if exactly
two entries are 0, then these entries must be opposite to each other for
the matrix to be invertible, and the other two entries can be anything
non-zero, for a total of 2(p− 1)2 matrices. So the order is

(p− 1)3(p− 2) + 4(p− 1)3 + 2(p− 1)2

=(p− 1)2[(p− 1)(p− 2) + 4(p− 1) + 2]

=(p− 1)2[(p− 1)(p+ 2) + 2]

=(p− 1)2(p2 + p)

=p(p+ 1)(p− 1)2

Thus, the order of the general linear group GL2(Fp) is p(p+ 1)(p− 1)2.
Now, construct a map f such that if we multiply the first row by some
non-zero k in Fp, any matrix with determinant 1 is mapped to a matrix
with determinant k and any matrix with determinant k is mapped
to a matrix with determinant 1 (all matrices in GL2(Fp)). Thus, we
have produced a bijection f between matrices with determinant 1 and
matrices with determinant k. Now there are (p− 1) possibilities for k.
It follows that the order of the special linear group SL2(Fp) is

|SL2(Fp)| =
1

p− 1
|GL2(Fp)| =

1

p− 1
{p(p+1)(p−1)2} = p(p+1)(p−1)

�
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Problem 4:
How many subspaces of each dimension are there in F3

p?

Solution 4:
A k-dimensional subspace of a vector space F3

p is specified by giving k linearly
independent vectors {v1, v2, . . . , vk} in F3

p with k = 1, 2, 3. Firstly, v1 can be
taken to be any non-zero vector in V . Therefore there are p3 − 1 choices for
v1. Given v1, v2 can be chosen to be any vector which is not in the subspace
spanned by v1. Since this subspace has p elements, there are p3 − p choices
for v2. Similarly, given v1, v2, there are p3 − p2 choices for v3. Therefore,

the number of sets of k linearly independent vectors in F3
p is

k∏
i=1

(p3 − pi−1).

For k = 3, we see that each k-dimensional subspace of F3
p has

k∏
i=1

(pk − pi−1)

bases. Thus the number of k-dimensional subspaces of F3
p is

k∏
i=1

(p3 − pi−1)

k∏
i=1

(pk − pi−1)

for k = 1, 2, 3. �

Problem 5:
Consider the determinant function det : F 2×2 → F , where F = Fp is the
prime field of order p and F 2×2 is the space of 2×2 matrices. Show that this
map is surjective, that all non-zero values of the determinant are taken on the
same number of times, but that there are more matrices with determinant 0
than with determinant 1.

Solution 5:
In order to prove that det : F 2×2 → F (where F = Fp) is surjective, observe
that for any k ∈ Fp, [

1 0
0 k

]
= k

Thus, det is surjective.
There are exactly p4 matrices with each entry from Fp.
From Solution 3, the number of matrices with non-zero determinant is the
order of the general linear group given by GL2(Fp) is

|GL2(Fp)| = p(p+ 1)(p− 1)2
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Therefore, the number of matrices with determinant 0 is

p4 −GL2(Fp) = p4 − (p4 − p3 − p2 + p) = p3 + p2 − p

Also from Solution 3, the number of matrices with determinant 1 is the order
of the special linear group given by SL2(Fp) is

|SL2(Fp)| = p(p+ 1)(p− 1) = p3 − p

Clearly for p2 > 0, we have

p3 + p2 − p > p3 − p

i.e., there are more matrices with determinant 0 than with determinant 1.�

Problem 6:
A 2× 2 matrix A has an eigenvector v1 = (1, 1)t with eigenvalue 2 and also
an eigenvector v2 = (1, 2)t with eigenvalue 3. Determine A.

Solution 6:

Let A =

[
a b
c d

]
.

Since A has an eigenvector v1 = (1, 1)t with eigenvalue 2, so

Av1 = 2v1

=⇒
[
a b
c d

] [
1
1

]
= 2

[
1
1

]
=⇒

[
a+ b
c+ d

]
=

[
2
2

]
Since A also has an eigenvector v2 = (1, 2)t with eigenvalue 3, so

Av1 = 2v1

=⇒
[
a b
c d

] [
1
2

]
= 3

[
1
2

]
=⇒

[
a+ 2b
c+ 2d

]
=

[
3
6

]
Thus, we have the following two system of equations{

a+ b = 2

a+ 2b = 3
and

{
c+ d = 2

c+ 2d = 6
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Solving, we get a = 1, b = 1, c = −2, d = 4. Thus, the matrix is

A =

[
1 1
−2 4

]
�

Problem 7:
Compute the characteristic polynomial and the complex eigenvalues and
eigenvectors of [

−2 2
−2 3

]

Solution 7:

Let A =

[
−2 2
−2 3

]
. Then the characteristic polynomial of A is given by

p(λ) = det(λI2 − A) = det

[
λ+ 2 −2

2 λ− 3

]
= λ2 − λ− 2

Hence the complex eigenvalues of A are the roots of

p(λ) = λ2 − λ− 2 = (λ− 2)(λ+ 1) = 0

which are 2,−1.
Let us now find the eigenvectors corresponding to the eigenvalue 2. We seek

a non-zero column vector

[
λ1
λ2

]
such that[

−2 2
−2 3

] [
λ1
λ2

]
= 2

[
λ1
λ2

]
i.e., [

−4λ1 + 2λ2
−2λ1 + λ2

]
=

[
0
0

]
Thus, any column vector

[
λ1
λ2

]
=

[
k
2k

]
for non-zero k is an eigenvector

corresponding to 2.
Now we find the eigenvectors corresponding to the eigenvalue −1. We seek

a non-zero column vector

[
λ1
λ2

]
such that[

−2 2
−2 3

] [
λ1
λ2

]
= −1

[
λ1
λ2

]
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i.e., [
−λ1 + 2λ2
−2λ1 + 4λ2

]
=

[
0
0

]
Thus, any column vector

[
λ1
λ2

]
=

[
2k
k

]
for non-zero k is an eigenvector

corresponding to −1. �

Problem 8:
The characteristic polynomial of the matrix below is t3 − 4t− 1. Determine
the missing entries.  0 1 2

1 1 0
1 ∗ ∗


Solution 8:
Taking x and y as the missing entries, consider the matrix as

A =

 0 1 2
1 1 0
1 x y


The characteristic polynomial of A is given by

det(tI3 − A)

= det

 t −1 −2
−1 t− 1 0
−1 −x t− y


=t det

[
t− 1 0
−x t− y

]
+ 1 det

[
−1 0
−1 t− y

]
− 2

[
−1 t− 1
−1 −x

]
=t(t− 1)(t− y)− t(t− y)− 2(x+ t− 1)

=t3 − (y + 1)t2 + (y − 3)t+ (−2x+ y + 2)

Now, we should have

t3 − (y + 1)t2 + (y − 3)t+ (−2x+ y + 2) = t3 − 4t− 1

So, y + 1 = 0, y − 3 = −4 and −2x + y + 2 = −1. So, x = 1 and y = −1
satisfy the equations. Thus, the matrix is

A =

 0 1 2
1 1 0
1 1 −1


�
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