Algebra 1 HW 5

Nirjhar Nath nirjhar@cmi.ac.in BMC202239

Problem 1:

Determine the primes p such that the matrix

$$\left[\begin{array}{rrrr} 1 & 2 & 0 \\ 0 & 3 & -1 \\ -2 & 0 & 2 \end{array}\right]$$

is invertible, when its entries are considered to be in \mathbb{F}_p .

Solution 1:

Here, we have

$$\det A = 1 \det \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix} - 2 \det \begin{bmatrix} 0 & -1 \\ -2 & 2 \end{bmatrix} + 0$$
$$= 6 - 2(-2)$$
$$= 10$$

where 10 is the symbol that refers to $1 + 1 + \cdots 1$ (10 times).

We know that a square matrix over any field is invertible iff its determinant is non-zero (as a member of the field).

Now, 10 = 0 in \mathbb{F}_p iff $p \mid (10 - 0) = 10$ i.e., iff p = 2 or 5 in \mathbb{F}_p . Thus, for any prime p in \mathbb{F}_p except for 2 = 1 + 1 and 5 = 1 + 1 + 1 + 1 + 1in \mathbb{F}_p , the given matrix is invertible.

Problem 2:

Solve completely the systems of linear equations AX = 0 and AX = B, where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}, \text{ and } B = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

(a) in \mathbb{Q} , (b) in \mathbb{F}_2 , (c) in \mathbb{F}_3 , (d) in \mathbb{F}_7 .

Solution 2:

(a) Consider the augmented matrix

$$[A|0] = \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & -1 & | & 0 \end{bmatrix}$$

Using $R_2 \to R_2 - R_1$ and $R_3 \to R_3 - R_1$, we get the matrix

1	1	$ \begin{array}{c} 0 \\ 1 \\ -1 \end{array} $	0]
0	-1	1	0
0	-2	-1	0
_			. –

Using $R_3 \rightarrow R_3 - 2R_2$, we get the matrix

Using $R_3 \rightarrow -R_3$ and $R_2 \rightarrow -R_2$, we get the matrix

$$\left[\begin{array}{rrrrr} 1 & 1 & 0 & | \ 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & | \ 0 \end{array}\right]$$

Using $R_2 \rightarrow R_2 + R_3$, we get the matrix

$$\left[\begin{array}{rrrr|rrrr} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]$$

Using $R_1 \to R_1 - R_2$, we get the matrix (with A in RREF)

$$\left[\begin{array}{rrrrr} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{array}\right]$$

Thus, the solution to the system AX = 0 with A in \mathbb{Q} is $X = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Now consider the augmented matrix

$$[A|B] = \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 1 & 0 & 1 & | & -1 \\ 1 & -1 & -1 & | & 1 \end{bmatrix}$$

Using same row operations as above, we get the matrix (with A in RREF)

$$\left[\begin{array}{rrrrr} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{array}\right]$$

Thus, the solution to the system AX = B with A, B in \mathbb{Q} is $X = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$. (b) In \mathbb{F}_2 , the operations + and \cdot are defined by

+	0	1		•	0	1
0	0	1	and	0	0	0
1	1	0		1	0	1

Consider the augmented matrix

$$[A|0] = \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 1 & -1 & -1 & | & 0 \end{bmatrix}$$

Using $R_2 \to R_2 + R_1$ and $R_3 \to R_3 + R_1$, we get the matrix

Using $R_2 \to R_2 + R_3$, we get the matrix

Using $R_1 \to R_1 + R_2$ and replacing -1 by 1 in \mathbb{F}_2 , we get the matrix

Thus, the solution to the system AX = 0 with A in \mathbb{F}_2 is $X = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Now consider the augmented matrix

$$[A|B] = \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 1 & 0 & 1 & | & -1 \\ 1 & -1 & -1 & | & 1 \end{bmatrix}$$

Using same row operations as above, we get the matrix (with A in RREF)

Thus, the solution to the system AX = B with A, B in \mathbb{F}_2 is $X = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. (c) Since all the row operations used in (a) of the form $R_i \to R_i + \lambda R_j, i \neq j$ are such that λ is an integer. So, for all such row operations, we can replace λ by $\lambda \pmod{3}$ in \mathbb{F}_3 . So, we can replace all the entries in [A|B] (with A in RREF) with their values mod 3, to get [A|B] (with A in RREF) in \mathbb{F}_3 . So the augmented matrix [A|0], with A in RREF is

$$\left[\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]$$

Thus, the solution to the system AX = 0 with A in \mathbb{F}_3 is $X = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Also, the augmented matrix [A|B], with A in RREF is

Γ	1	0	0	$\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$
	0	1	0	1
L	0	0	1	1

Thus, the solution to the system AX = B with A, B in \mathbb{F}_2 is $X = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

(d) Since all the row operations used in (a) of the form $R_i \to R_i + \lambda R_j$, $i \neq j$ are such that λ is an integer. So, for all such row operations, we can replace λ by $\lambda \pmod{7}$ in \mathbb{F}_7 . So, we can replace all the entries in [A|B] (with A in RREF) with their values mod 7, to get [A|B] (with A in RREF) in \mathbb{F}_7 . So the augmented matrix [A|0], with A in RREF is

1	0	0	0
0	1	0	0
0	0	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Thus, the solution to the system AX = 0 with A in \mathbb{F}_7 is $X = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Also, the augmented matrix [A|B], with A in RREF is

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

Thus, the solution to the system AX = B with A, B in \mathbb{F}_2 is $X = \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix}$.

Problem 3:

Let \mathbb{F}_p be a prime field, and let $V = \mathbb{F}_p^2$. Prove:

- (a) The number of bases of V is equal to the order of the general linear group $GL_2(\mathbb{F}_p)$.
- (b) The order of the general linear group $GL_2(\mathbb{F}_p)$ is $p(p+1)(p-1)^2$, and the order of the special linear group $SL_2(\mathbb{F}_p)$ is p(p+1)(p-1).

Solution 3:

- (a) Consider the map ϕ from the ordered bases of $V = \mathbb{F}_p^2$ to $GL_2(\mathbb{F}_p)$ given by $\phi(v_1, v_2) = [v_1, v_2]$. Clearly, the map is injective. Also, the map is surjective, since the columns of an invertible matrix form an ordered basis. Thus, ϕ is a bijection and hence the number of bases of V is equal to the order of the general linear group $GL_2(\mathbb{F}_p)$.
- (b) Let $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a matrix in $GL_2(\mathbb{F}_p)$. So, M is invertible iff $ad \neq bc$. If a, b, c, d are all non-zero, we can fix a, b, c arbitrarily and d can be anything except $a^{-1}bc$. This gives us $(p-1)^3(p-2)$ matrices. If exactly one of the entries is 0, then the other three entries can be anything non-zero, for a total of $4(p-1)^3$ matrices. Now, if exactly two entries are 0, then these entries must be opposite to each other for the matrix to be invertible, and the other two entries can be anything non-zero, for a total of $2(p-1)^2$ matrices. So the order is

$$(p-1)^{3}(p-2) + 4(p-1)^{3} + 2(p-1)^{2}$$

=(p-1)^{2}[(p-1)(p-2) + 4(p-1) + 2]
=(p-1)^{2}[(p-1)(p+2) + 2]
=(p-1)^{2}(p^{2} + p)
=p(p+1)(p-1)^{2}

Thus, the order of the general linear group $GL_2(\mathbb{F}_p)$ is $p(p+1)(p-1)^2$. Now, construct a map f such that if we multiply the first row by some non-zero k in \mathbb{F}_p , any matrix with determinant 1 is mapped to a matrix with determinant k and any matrix with determinant k is mapped to a matrix with determinant 1 (all matrices in $GL_2(\mathbb{F}_p)$). Thus, we have produced a bijection f between matrices with determinant 1 and matrices with determinant k. Now there are (p-1) possibilities for k. It follows that the order of the special linear group $SL_2(\mathbb{F}_p)$ is

$$|SL_2(\mathbb{F}_p)| = \frac{1}{p-1}|GL_2(\mathbb{F}_p)| = \frac{1}{p-1}\{p(p+1)(p-1)^2\} = p(p+1)(p-1)$$

Problem 4:

How many subspaces of each dimension are there in \mathbb{F}_{p}^{3} ?

Solution 4:

A k-dimensional subspace of a vector space \mathbb{F}_p^3 is specified by giving k linearly independent vectors $\{v_1, v_2, \ldots, v_k\}$ in \mathbb{F}_p^3 with k = 1, 2, 3. Firstly, v_1 can be taken to be any non-zero vector in V. Therefore there are $p^3 - 1$ choices for v_1 . Given v_1, v_2 can be chosen to be any vector which is not in the subspace spanned by v_1 . Since this subspace has p elements, there are $p^3 - p$ choices for v_2 . Similarly, given v_1, v_2 , there are $p^3 - p^2$ choices for v_3 . Therefore, the number of sets of k linearly independent vectors in \mathbb{F}_p^3 is $\prod_{i=1}^k (p^3 - p^{i-1})$. For k = 3, we see that each k-dimensional subspace of \mathbb{F}_p^3 has $\prod_{i=1}^k (p^k - p^{i-1})$ bases. Thus the number of k-dimensional subspaces of \mathbb{F}_p^3 is

$$\frac{\prod\limits_{i=1}^k (p^3 - p^{i-1})}{\prod\limits_{i=1}^k (p^k - p^{i-1})}$$

for k = 1, 2, 3.

Problem 5:

Consider the determinant function det : $F^{2\times 2} \to F$, where $F = \mathbb{F}_p$ is the prime field of order p and $F^{2\times 2}$ is the space of 2×2 matrices. Show that this map is surjective, that all non-zero values of the determinant are taken on the same number of times, but that there are more matrices with determinant 0 than with determinant 1.

Solution 5:

In order to prove that det : $F^{2\times 2} \to F$ (where $F = \mathbb{F}_p$) is surjective, observe that for any $k \in \mathbb{F}_p$,

$$\left[\begin{array}{cc} 1 & 0\\ 0 & k \end{array}\right] = k$$

Thus, det is surjective.

There are exactly p^4 matrices with each entry from \mathbb{F}_p .

From Solution 3, the number of matrices with non-zero determinant is the order of the general linear group given by $GL_2(\mathbb{F}_p)$ is

$$|GL_2(\mathbb{F}_p)| = p(p+1)(p-1)^2$$

Therefore, the number of matrices with determinant 0 is

$$p^4 - GL_2(\mathbb{F}_p) = p^4 - (p^4 - p^3 - p^2 + p) = p^3 + p^2 - p$$

Also from Solution 3, the number of matrices with determinant 1 is the order of the special linear group given by $SL_2(\mathbb{F}_p)$ is

$$|SL_2(\mathbb{F}_p)| = p(p+1)(p-1) = p^3 - p$$

Clearly for $p^2 > 0$, we have

$$p^3 + p^2 - p > p^3 - p$$

i.e., there are more matrices with determinant 0 than with determinant $1.\blacksquare$

Problem 6:

A 2 × 2 matrix A has an eigenvector $v_1 = (1, 1)^t$ with eigenvalue 2 and also an eigenvector $v_2 = (1, 2)^t$ with eigenvalue 3. Determine A.

Solution 6: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Since A has an eigenvector $v_1 = (1, 1)^t$ with eigenvalue 2, so

$$Av_{1} = 2v_{1}$$

$$\implies \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\implies \begin{bmatrix} a+b \\ c+d \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Since A also has an eigenvector $v_2 = (1, 2)^t$ with eigenvalue 3, so

$$Av_{1} = 2v_{1}$$

$$\implies \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\implies \begin{bmatrix} a+2b \\ c+2d \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Thus, we have the following two system of equations

$$\begin{cases} a+b=2\\ a+2b=3 \end{cases} \quad \text{and} \quad \begin{cases} c+d=2\\ c+2d=6 \end{cases}$$

Solving, we get a = 1, b = 1, c = -2, d = 4. Thus, the matrix is

A =	1	1]
A =	-2	4

Problem 7:

Compute the characteristic polynomial and the complex eigenvalues and eigenvectors of

$$\left[\begin{array}{rrr} -2 & 2\\ -2 & 3 \end{array}\right]$$

Solution 7: Let $A = \begin{bmatrix} -2 & 2 \\ -2 & 3 \end{bmatrix}$. Then the characteristic polynomial of A is given by

$$p(\lambda) = \det(\lambda I_2 - A) = \det \begin{bmatrix} \lambda + 2 & -2 \\ 2 & \lambda - 3 \end{bmatrix} = \lambda^2 - \lambda - 2$$

Hence the complex eigenvalues of A are the roots of

$$p(\lambda) = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1) = 0$$

which are 2, -1.

Let us now find the eigenvectors corresponding to the eigenvalue 2. We seek a non-zero column vector $\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$ such that

$$\begin{bmatrix} -2 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = 2 \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

i.e.,

$$\begin{bmatrix} -4\lambda_1 + 2\lambda_2 \\ -2\lambda_1 + \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus, any column vector $\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} k \\ 2k \end{bmatrix}$ for non-zero k is an eigenvector corresponding to 2.

Now we find the eigenvectors corresponding to the eigenvalue -1. We seek a non-zero column vector $\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$ such that

$$\begin{bmatrix} -2 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = -1 \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

i.e.,

$$\begin{bmatrix} -\lambda_1 + 2\lambda_2 \\ -2\lambda_1 + 4\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus, any column vector $\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 2k \\ k \end{bmatrix}$ for non-zero k is an eigenvector corresponding to -1 .

Problem 8:

The characteristic polynomial of the matrix below is $t^3 - 4t - 1$. Determine the missing entries.

$$\left[\begin{array}{rrrr} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & * & * \end{array}\right]$$

Solution 8:

Taking x and y as the missing entries, consider the matrix as

$$A = \left[\begin{array}{rrr} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & x & y \end{array} \right]$$

The characteristic polynomial of A is given by

$$\det(tI_3 - A) = \det \begin{bmatrix} t & -1 & -2 \\ -1 & t - 1 & 0 \\ -1 & -x & t - y \end{bmatrix}$$
$$= t \det \begin{bmatrix} t - 1 & 0 \\ -x & t - y \end{bmatrix} + 1 \det \begin{bmatrix} -1 & 0 \\ -1 & t - y \end{bmatrix} - 2 \begin{bmatrix} -1 & t - 1 \\ -1 & -x \end{bmatrix}$$
$$= t(t - 1)(t - y) - t(t - y) - 2(x + t - 1)$$
$$= t^3 - (y + 1)t^2 + (y - 3)t + (-2x + y + 2)$$

Now, we should have

$$t^{3} - (y+1)t^{2} + (y-3)t + (-2x+y+2) = t^{3} - 4t - 1$$

So, y + 1 = 0, y - 3 = -4 and -2x + y + 2 = -1. So, x = 1 and y = -1 satisfy the equations. Thus, the matrix is

$$A = \left[\begin{array}{rrr} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{array} \right]$$