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Problem 1:
(a) Prove that the space Rn×n of all n× n real matrices is the direct sum of
the space of symmetric matrices (At = A) and the space of skew-symmetric
matrices (At = −A).
(b) The trace of a square matrix is the sum of its diagonal entries. Let W1

be the space of n × n matrices whose trace is zero. Find a subspace W2 so
that Rn×n = W1 ⊕W2.
Solution 1:
(a) Let V1 and V2 be the spaces of symmetric and skew-symmetric matrices
respectively of Rn×n.
Suppose

V1 ⊕ V2 = Rn×n

So, V1 + V2 = Rn×n and V1 ∩ V2 = 0.
We have,

A =
1

2
(A+ At) +

1

2
(A− At)

where {
1

2
(A+ At)

}t

=
1

2
(At + A)

and {
1

2
(A− At)

}t

=
1

2
(At − A) = −1

2
(A− At)

Therefore,
1

2
(A+ At) ∈ V1 and

1

2
(A− At) ∈ V2.

Thus, assuming M1 =
1

2
(A+ At) and M2 =

1

2
(A− At), we have

M = M1 +M2 for M1 ∈ V1,M2 ∈ V2

Therefore,
V1 + V2 = Rn×n

Now, if A = At and A = −At, adding we have A = 0, the null matrix.
Therefore,

V1 ∩ V2 = {0}

Hence,
V1 ⊕ V2 = Rn×n
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(b) Let W1 be the space of n × n matrices whose trace is zero. Let W2 be
the subspace of Rn×n and

W2 = k(e11) + 0(e12) + · · ·+ 0(enn) =


k 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


Suppose M is a matrix of Rn×n with trace p. For any such M we can
construct W ′ such that M = W +W ′ with W ∈ W1.
Construct

W = M − p


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


Therefore,

tr (W ) = tr (M)− p = p− p = 0

Thus, W ∈ W1 with tr (W ) = 0.
Thus,

W1 +W2 = Rn×n

.
Now, if W ∈ W1, then tr (W ) = 0 and if V ∈ W2, then tr (V ) = p.
Thus, if A is any arbitrary matrix such that A ∈ W1∪W2, then A = W +V .
Therefore,

tr (A) = tr (W + V ) = tr (W ) + tr (V )

But, tr (A) = 0 since A lies in V1.
Therefore,

tr (V ) = tr (A)− tr (W ) = 0− 0 = 0

So,

V =


p 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 =


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 = 0

which is the null matrix. Thus,

W1 ∩W2 = {0}

Hence,
Rn×n = W1 ⊕W2
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Problem 2:
Let E be the set of vectors (e1, e2, . . . ) in R∞ and let w = (1, 1, 1, . . . ). De-
scribe the span of the set (w, e1, e2, . . . ). Also find a vector that is not in the
span of the set (w, e1, e2, . . . ).
Solution 2:
The span of the infinite set (w, e1, e2, . . . ) is defined to be the set of the
vectors v that are combinations of finitely many elements of (w, e1, e2, . . . ),
i.e.,

v = c1x1 + c2x2 + · · · cnvn
where xi’s are in (w, e1, e2, . . . ). The set also does not span because the set
(1, 2, 3, . . . ) cannot be written as a finite combination of elements of the set
(w, e1, e2, . . . ). Thus, (1, 2, 3, . . . ) is a vector that is not in the span of the
set (w, e1, e2, . . . ). �
Problem 3:
Compute the determinant of the following n × n matrix using induction on
n: 

2 −1
−1 2

−1 2
. . .

2 −1
−1 2


Solution 3: Let

An =



2 −1
−1 2

−1 2
. . .

2 −1
−1 2


n

be a n× n matrix. Thus, we can expand detAn as

2 det



2 −1
−1 2

−1 2
. . .

2 −1
−1 2


n−1

−(−1) det



−1 −1
0 2 −1
−1 2

. . .

2 −1
−1 2


n−1
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Thus,
detAn = 2 detAn−1 − detAn−2

We claim that detAn = n+ 1.
Clearly, detA1 = det[2] = 2,

detA2 = det

[
2 −1
−1 2

]
= 4− 1 = 3.

We use strong induction to prove our claim.
Suppose detAi = i+ 1 for all 1 ≤ i ≤ k for some k ∈ N.
Thus,

detAk+1 = 2 detAk − detAk−1 = 2(k + 1)− k = k + 2

Thus, by induction, detAn = n+ 1 for all n. �
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Problem 4:

Prove that det

[
A B
0 D

]
= (detA)(detD), if A and D are square blocks.

Solution 4:
If D is not invertible, the set of row vectors of D is not linearly independent
i.e., the set of row vectors (0 D) is also not linearly independent. So,[
A B
0 D

]
cannot have all independent rows and hence not invertible.

Also, since D is square and not invertible, it must be the case that detD = 0.
So,

(detA)(detD) = 0 = det

[
A B
0 D

]
If D is invertible, then we have[

I 0
0 D−1

] [
A B
0 D

]
=

[
A B
0 I

]
⇒ det

[
I 0
0 D−1

]
det

[
A B
0 D

]
= det

[
A B
0 I

]
So we get the identity

detD−1 det

[
A B
0 D

]
= detA

Using detA−1 =
1

detA
, we have

det

[
A B
0 D

]
= (detA)(detD)

�
Problem 5:
Compute the determinant of the following matrix by expansion on the bottom
row:  a b c

1 0 1
1 1 1


Solution 5:
Expanding on the bottom row, we have

det

 a b c
1 0 1
1 1 1

 = 1 det

[
b c
0 1

]
− 1 det

[
a c
1 1

]
+ 1 det

[
a b
1 0

]
= b− (a− c) + (−b) = c− a �
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Problem 6:
Let A be an n×n matrix with integer entries aij. Prove that A is invertible,
and that its inverse A−1 has integer entries, if and only if detA = ±1.
Solution 6:
First we prove that A is invertible.
Suppose that detA 6= 0. Let ei be the standard basis vector. Then the
equations Ax = ei has a unique solution xi for i = 1, 2, . . . , n.
Construct B = (x1, x2, . . . , xn). Then we have AB = (e1, e2, . . . , en) = In.
So, B is the right inverse of A and hence A is the right inverse of B and thus,
A is invertible with A−1 = B.
Now suppose A−1 has integer entries, then we have

detA−1 detA = det(A−1A) = det I = 1

or,

detA−1 =
1

detA
∈ Z

which is only possible when detA = ±1.
To prove the other direction, we proceed as follows.
We have,

A−1 =
1

detA
(adj A)

Now if detA = ±1, we have A−1 = ± adj A. Now, since adj A is the matrix
of co-factors of A, and since A has all integer entries, so adj A will have all
integer entries. Hence A−1 has all integer entries. �
Problem 7: (Vandermonde determinant)

(a) Prove that det

 1 1 1
a b c
a2 b2 c2

 = (a− b)(b− c)(c− a).

(b) Prove an analogous formula for n × n matrices, using appropriate row
operations to clear out the first column.
(c) Use the Vandermonde determinant to prove that there is a unique poly-
nomial p(t) of degree n that takes arbitrary prescribed values at n+ 1 points
to t0, . . . , tn.
Solution 7:
(a)

det

 1 1 1
a b c
a2 b2 c2

 = 1(bc2 − b2c)− 1(c2a− ca2) + 1(ab2 − a2b)

= ab2 + bc2 + ca2 − a2b− b2c− ca2 = (a− b)(b− c)(c− a)
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(b) Let

An =


1 1 1 · · · 1
a1 a2 a3 · · · an
a21 a22 a23 · · · a2n
...

...
...

an−11 an−12 an−13 · · · an−1n


Therefore,

detAn =


1 1 1 · · · 1
a1 a2 a3 · · · an
a21 a22 a23 · · · a2n
...

...
...

an−11 an−12 an−13 · · · an−1n

 = det


1 a1 a21 · · · an−11

1 a2 a22 · · · an−12

1 a3 a23 · · · an−13
...

...
...

1 an a2n · · · an−1n


Using row operations Ri → Ri −R1 for all 2 ≤ i ≤ n, we get

detAn = det


1 a1 a21 · · · an−11

1 a2 − a1 a22 − a21 · · · an−12 − an−11

1 a3 − a1 a23 − a21 · · · an−13 − an−11
...

...
...

1 an − a1 a2n − a21 · · · an−1n − an−11


Without changing the value of detAn, we perform the column operations
Ci → Ci − Ci−1 for 2 ≤ i ≤ n to get

detAn = det


1 0 0 · · · 0
0 a2 − a1 (a2 − a1)a2 · · · (a2 − a1)an−22

0 a3 − a1 (a3 − a1)a3 · · · (a3 − a1)an−23
...

...
...

0 an − a1 (an − a1)an · · · (an − a1)an−2n



=
n∏

i=2

(ai − a1) det


1 0 0 · · · 0
0 1 a2 · · · an−22

0 1 a3 · · · an−23
...

...
...

0 1 an · · · an−2n



=
n∏

i=2

(ai − a1) det


1 a2 · · · an−22

1 a3 · · · an−23
...

...
...

1 an · · · an−2n


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Thus, we get the recursive formula

detAn =
n∏

i=2

(ai − a1) detAn−1 (1)

We have

detA2 = det

[
1 1

an−1 an

]
= det

[
1 an−1
1 an

]
= an − an−1

Using this in (1), we have

detAn =
∏

1≤j<i≤n

(ai − aj)

(c) Let p(t) be a polynomial such that p(ti) = ai for all 0 ≤ i ≤ n.
So,

p(t) =
∑

1≤i<j≤n

ai
(t− tj)
(ti − tj)

Suppose p(t) and f(t) are two unique polynomials of degree n such that they
have same values for t = t0, t1, . . . , tn.
Then deg(p(t)− f(t)) ≤ n and p(t)− f(t) for all t.
Let q(t) be a polynomial such that q(ti) = 0 for all 0 ≤ i ≤ n. Then,

q(t) = p(t)− f(t)

Now suppose

q(t) =
n∑

i=0

λit
i

where λi’s are not all zero.
Now,

det


1 1 1 · · · 1
t1 t2 t3 · · · tn
t21 t22 t23 · · · t2n
...

...
...

tn−11 tn−12 tn−13 · · · tn−1n

 =
∏

0≤i<j≤n

(ti − tj) 6= 0 (2)

But if q(ti) = 0 for all 0 ≤ i ≤ n, then∑
0≤i≤n

λiRi = 0
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where Ri is the ith row.
This implies,

Rk =
∑

0≤i<j<n

λi
λj
Ri = 0

a contradiction to equation (2).
Thus, p(t) = f(t). �
Problem 8:

Let A =

 1 2 3 4 5
10 20 30 40 50
3 6 7 18 14

. Consider the map T (x) = Ax from R5 to

R3. Find an explicit basis of R5 and an explicit basis of R3 such that with
respect to these bases the matrix of T has matrix M = identity of suitable
size in top left corner and zeros everywhere else.
Solution 8:
Given,

A =

 1 2 3 4 5
10 20 30 40 50
3 6 7 18 14


Using row operations R2 → R2−10R1 and R3 → R3−3R1, we get the matrix 1 2 3 4 5

0 0 0 0 0
0 0 −2 6 −1


Now by R2 ↔ R3, we get the matrix 1 2 3 4 5

0 0 −2 6 −1
0 0 0 0 0


Using row operation R2 → −1

2
R2, we get the matrix 1 2 3 4 5
0 0 1 −3 1

2

0 0 0 0 0


Using column operations Ci = Ci − iC1 for i = 2, 3, 4, 5, we get the matrix 1 0 0 0 0

0 0 1 −3 1
2

0 0 0 0 0


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Now using column operations C4 → C4 + 3C3 and C5 → C5 − 1
2
C3, we get

the matrix  1 0 0 0 0
0 0 1 0 0
0 0 0 0 0


Now using C2 ↔ C3, we get the matrix 1 0 0 0 0

0 1 0 0 0
0 0 0 0 0


We know that every row and column operations on a matrix are respectively
left and right multiplication of the matrix by corresponding elementary ma-
trices.
Therefore, A is left multiplied by 1 0 0

0 −1
2

0
0 0 0

 1 0 0
0 0 1
0 1 0

 1 0 0
−10 1 0
−3 0 1



=

 1 0 0
0 0 −1

2

0 1 0

 1 0 0
−10 1 0
−3 0 1


=

 1 0 0
3
2

0 −1
2

−10 1 0


Also, A is right multiplied by

1 −2 −3 −4 −5
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 3 −1

2

0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1



=


1 −2 −3 −13 −7

2

0 1 0 0 0
0 0 1 3 −1

2

0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


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=


1 −3 −2 −13 −7

2

0 0 1 0 0
0 1 0 3 −1

2

0 0 0 1 0
0 0 0 0 1


Thus,

A′ =

 1 0 0
3
2

0 −1
2

−10 1 0

A


1 −3 −2 −13 −7
2

0 0 1 0 0
0 1 0 3 −1

2

0 0 0 1 0
0 0 0 0 1


So,

A′ =

 1 0 0
10 0 1
−3 −2 0

−1A


1 −3 −2 −13 −7
2

0 0 1 0 0
0 1 0 3 −1

2

0 0 0 1 0
0 0 0 0 1

 = Q−1AP

where

Q =

 1 0 0
10 0 1
−3 −2 0


and

P =


1 −3 −2 −13 −7

2

0 0 1 0 0
0 1 0 3 −1

2

0 0 0 1 0
0 0 0 0 1


We had old basis of R3 and R5 as the standard basis.
Thus, new basis of R3 is (e1, e2, e3)Q = ((1, 10,−3)t, (0, 0,−2)t, (0, 1, 0)t) and
new basis of R5 is (e1, e2, e3, e4, e5)P = ((1, 0, 0, 0, 0)t, (−3, 0, 1, 0, 0)t,
(−2, 1, 0, 0, 0)t, (−13, 0, 3, 1, 0)t, (−7

2
, 0,−1

2
, 0, 1)t). �
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