Algebra 1 HW 4

Nirjhar Nath nirjhar@cmi.ac.in

Problem 1:

(a) Prove that the space $\mathbb{R}^{n \times n}$ of all $n \times n$ real matrices is the direct sum of the space of symmetric matrices $(A^t = A)$ and the space of skew-symmetric matrices $(A^t = -A)$.

(b) The trace of a square matrix is the sum of its diagonal entries. Let W_1 be the space of $n \times n$ matrices whose trace is zero. Find a subspace W_2 so that $\mathbb{R}^{n \times n} = W_1 \oplus W_2$.

Solution 1:

(a) Let V_1 and V_2 be the spaces of symmetric and skew-symmetric matrices respectively of $\mathbb{R}^{n \times n}$.

Suppose

$$
V_1 \oplus V_2 = \mathbb{R}^{n \times n}
$$

So, $V_1 + V_2 = \mathbb{R}^{n \times n}$ and $V_1 \cap V_2 = 0$. We have,

$$
A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t)
$$

where

$$
\left\{\frac{1}{2}(A + A^t)\right\}^t = \frac{1}{2}(A^t + A)
$$

and

$$
\left\{\frac{1}{2}(A - A^t)\right\}^t = \frac{1}{2}(A^t - A) = -\frac{1}{2}(A - A^t)
$$

Therefore, $\frac{1}{2}$ 2 $(A + A^t) \in V_1$ and $\frac{1}{2}$ $(A - A^t) \in V_2$. Thus, assuming $M_1 =$ 1 2 $(A + A^t)$ and $M_2 =$ 1 2 $(A - A^t)$, we have

 $M = M_1 + M_2$ for $M_1 \in V_1, M_2 \in V_2$

Therefore,

$$
V_1 + V_2 = \mathbb{R}^{n \times n}
$$

Now, if $A = A^t$ and $A = -A^t$, adding we have $A = 0$, the null matrix. Therefore,

$$
V_1 \cap V_2 = \{0\}
$$

Hence,

$$
V_1 \oplus V_2 = \mathbb{R}^{n \times n}
$$

(b) Let W_1 be the space of $n \times n$ matrices whose trace is zero. Let W_2 be the subspace of $\mathbb{R}^{n \times n}$ and

$$
W_2 = k(e_{11}) + 0(e_{12}) + \dots + 0(e_{nn}) = \begin{bmatrix} k & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}
$$

Suppose M is a matrix of $\mathbb{R}^{n \times n}$ with trace p. For any such M we can construct W' such that $M = W + W'$ with $W \in W_1$. Construct

$$
W = M - p \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}
$$

Therefore,

$$
tr (W) = tr (M) - p = p - p = 0
$$

Thus, $W \in W_1$ with $tr(W) = 0$. Thus,

$$
W_1 + W_2 = \mathbb{R}^{n \times n}
$$

Now, if $W \in W_1$, then tr $(W) = 0$ and if $V \in W_2$, then tr $(V) = p$. Thus, if A is any arbitrary matrix such that $A \in W_1 \cup W_2$, then $A = W + V$. Therefore,

$$
tr(A) = tr(W + V) = tr(W) + tr(V)
$$

But, tr $(A) = 0$ since A lies in V_1 . Therefore,

$$
tr (V) = tr (A) - tr (W) = 0 - 0 = 0
$$

So,

.

$$
V = \begin{bmatrix} p & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} = 0
$$

which is the null matrix. Thus,

$$
W_1 \cap W_2 = \{0\}
$$

Hence,

$$
\mathbb{R}^{n \times n} = W_1 \oplus W_2
$$

Problem 2:

Let E be the set of vectors (e_1, e_2, \dots) in \mathbb{R}^{∞} and let $w = (1, 1, 1, \dots)$. Describe the span of the set (w, e_1, e_2, \dots) . Also find a vector that is not in the span of the set (w, e_1, e_2, \dots) .

Solution 2:

The span of the infinite set $(w, e_1, e_2, ...)$ is defined to be the set of the vectors v that are combinations of finitely many elements of (w, e_1, e_2, \dots) , i.e.,

$$
v = c_1 x_1 + c_2 x_2 + \cdots + c_n v_n
$$

where x_i 's are in (w, e_1, e_2, \dots) . The set also does not span because the set $(1, 2, 3, ...)$ cannot be written as a finite combination of elements of the set (w, e_1, e_2, \dots) . Thus, $(1, 2, 3, \dots)$ is a vector that is not in the span of the set (w, e_1, e_2, \dots) .

Problem 3:

Compute the determinant of the following $n \times n$ matrix using induction on n:

$$
\begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & & & & \\ & -1 & 2 & & & \\ & & \ddots & & & \\ & & & 2 & -1 & \\ & & & & -1 & 2 \end{bmatrix}
$$

Solution 3: Let

$$
A_n = \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & & & & \\ & -1 & 2 & & & \\ & & & \ddots & & \\ & & & & 2 & -1 \\ & & & & & -1 & 2 \end{bmatrix}_n
$$

be a $n \times n$ matrix. Thus, we can expand det A_n as

$$
2 \det \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & & & & \\ & -1 & 2 & & & \\ & & \ddots & & & \\ & & & 2 & -1 & \\ & & & & -1 & 2 \end{bmatrix}_{n-1} - (-1) \det \begin{bmatrix} -1 & -1 & & & & & \\ 0 & 2 & -1 & & & & \\ & & -1 & 2 & & & \\ & & & \ddots & & & \\ & & & & 2 & -1 & \\ & & & & -1 & 2 \end{bmatrix}_{n-1}
$$

Thus,

$$
\det A_n = 2 \det A_{n-1} - \det A_{n-2}
$$

We claim that $\det A_n = n + 1$. Clearly, $\det A_1 = \det[2] = 2$, det $A_2 = \det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 4 - 1 = 3.$ We use strong induction to prove our claim. Suppose det $A_i = i + 1$ for all $1 \leq i \leq k$ for some $k \in \mathbb{N}$. Thus, det $A_{k+1} = 2 \det A_k - \det A_{k-1} = 2(k+1) - k = k+2$

Thus, by induction, $\det A_n = n + 1$ for all n.

Problem 4:

Prove that det $\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$ 0 D 1 $=(\det A)(\det D)$, if A and D are square blocks. Solution 4:

If D is not invertible, the set of row vectors of D is not linearly independent i.e., the set of row vectors $(0 \quad D)$ is also not linearly independent. So, $\begin{bmatrix} A & B \end{bmatrix}$ 0 D 1 cannot have all independent rows and hence not invertible. Also, since D is square and not invertible, it must be the case that $\det D = 0$. So,

$$
(\det A)(\det D) = 0 = \det \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}
$$

If D is invertible, then we have

$$
\begin{bmatrix} I & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} A & B \\ 0 & D \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & I \end{bmatrix}
$$

$$
\Rightarrow \det \begin{bmatrix} I & 0 \\ 0 & D^{-1} \end{bmatrix} \det \begin{bmatrix} A & B \\ 0 & D \end{bmatrix} = \det \begin{bmatrix} A & B \\ 0 & I \end{bmatrix}
$$

So we get the identity

$$
\det D^{-1} \det \left[\begin{array}{cc} A & B \\ 0 & D \end{array} \right] = \det A
$$

Using det
$$
A^{-1} = \frac{1}{\det A}
$$
, we have
\n
$$
\det \begin{bmatrix} A & B \\ 0 & D \end{bmatrix} = (\det A)(\det D)
$$

Problem 5:

Compute the determinant of the following matrix by expansion on the bottom row:

 \Box

$$
\left[\begin{array}{rrr} a & b & c \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right]
$$

Solution 5:

Expanding on the bottom row, we have

$$
\det\begin{bmatrix} a & b & c \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 1 \det\begin{bmatrix} b & c \\ 0 & 1 \end{bmatrix} - 1 \det\begin{bmatrix} a & c \\ 1 & 1 \end{bmatrix} + 1 \det\begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}
$$

$$
= b - (a - c) + (-b) = c - a
$$

Problem 6:

Let A be an $n \times n$ matrix with integer entries a_{ij} . Prove that A is invertible, and that its inverse A^{-1} has integer entries, if and only if det $A = \pm 1$. Solution 6:

First we prove that A is invertible.

Suppose that $\det A \neq 0$. Let e_i be the standard basis vector. Then the equations $Ax = e_i$ has a unique solution x_i for $i = 1, 2, ..., n$. Construct $B = (x_1, x_2, ..., x_n)$. Then we have $AB = (e_1, e_2, ..., e_n) = I_n$.

So, B is the right inverse of A and hence A is the right inverse of B and thus, A is invertible with $A^{-1} = B$.

Now suppose A^{-1} has integer entries, then we have

$$
\det A^{-1} \det A = \det(A^{-1}A) = \det I = 1
$$

or,

$$
\det A^{-1} = \frac{1}{\det A} \in \mathbb{Z}
$$

which is only possible when $\det A = \pm 1$.

To prove the other direction, we proceed as follows. We have,

$$
A^{-1} = \frac{1}{\det A} (\text{adj } A)
$$

Now if det $A = \pm 1$, we have $A^{-1} = \pm \operatorname{adj} A$. Now, since adj A is the matrix of co-factors of A, and since A has all integer entries, so adj A will have all integer entries. Hence A^{-1} has all integer entries. $□$

Problem 7: (Vandermonde determinant)

(a) Prove that det
$$
\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (a - b)(b - c)(c - a).
$$

(b) Prove an analogous formula for $n \times n$ matrices, using appropriate row operations to clear out the first column.

(c) Use the Vandermonde determinant to prove that there is a unique polynomial $p(t)$ of degree n that takes arbitrary prescribed values at $n+1$ points to t_0, \ldots, t_n .

Solution 7:

(a)

$$
\det \begin{bmatrix} 1 & 1 & 1 \ a & b & c \ a^2 & b^2 & c^2 \end{bmatrix} = 1(bc^2 - b^2c) - 1(c^2a - ca^2) + 1(ab^2 - a^2b)
$$

$$
= ab^2 + bc^2 + ca^2 - a^2b - b^2c - ca^2 = (a - b)(b - c)(c - a)
$$

(b) Let

$$
A_n = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\ \vdots & \vdots & & & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} \end{bmatrix}
$$

Therefore,

$$
\det A_n = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\ \vdots & \vdots & & & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} \end{bmatrix} = \det \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ 1 & a_3 & a_3^2 & \cdots & a_3^{n-1} \\ \vdots & \vdots & & & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{bmatrix}
$$

Using row operations $R_i \to R_i - R_1$ for all $2 \leq i \leq n$, we get

$$
\det A_n = \det \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 - a_1 & a_2^2 - a_1^2 & \cdots & a_2^{n-1} - a_1^{n-1} \\ 1 & a_3 - a_1 & a_3^2 - a_1^2 & \cdots & a_3^{n-1} - a_1^{n-1} \\ \vdots & \vdots & & & \vdots \\ 1 & a_n - a_1 & a_n^2 - a_1^2 & \cdots & a_n^{n-1} - a_1^{n-1} \end{bmatrix}
$$

Without changing the value of $\det A_n$, we perform the column operations $C_i \rightarrow C_i - C_{i-1}$ for $2 \leq i \leq n$ to get

$$
\det A_n = \det \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 - a_1 & (a_2 - a_1)a_2 & \cdots & (a_2 - a_1)a_2^{n-2} \\ 0 & a_3 - a_1 & (a_3 - a_1)a_3 & \cdots & (a_3 - a_1)a_3^{n-2} \\ \vdots & \vdots & & & \vdots \\ 0 & a_n - a_1 & (a_n - a_1)a_n & \cdots & (a_n - a_1)a_n^{n-2} \end{bmatrix}
$$

$$
= \prod_{i=2}^n (a_i - a_1) \det \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & a_2 & \cdots & a_2^{n-2} \\ 0 & 1 & a_3 & \cdots & a_3^{n-2} \\ \vdots & \vdots & & & \vdots \\ 0 & 1 & a_n & \cdots & a_n^{n-2} \end{bmatrix}
$$

$$
= \prod_{i=2}^n (a_i - a_1) \det \begin{bmatrix} 1 & a_2 & \cdots & a_2^{n-2} \\ 1 & a_3 & \cdots & a_3^{n-2} \\ \vdots & \vdots & & & \vdots \\ 1 & a_n & \cdots & a_n^{n-2} \end{bmatrix}
$$

Thus, we get the recursive formula

$$
\det A_n = \prod_{i=2}^n (a_i - a_1) \det A_{n-1}
$$
 (1)

We have

$$
\det A_2 = \det \begin{bmatrix} 1 & 1 \\ a_{n-1} & a_n \end{bmatrix} = \det \begin{bmatrix} 1 & a_{n-1} \\ 1 & a_n \end{bmatrix} = a_n - a_{n-1}
$$

Using this in (1) , we have

$$
\det A_n = \prod_{1 \le j < i \le n} (a_i - a_j)
$$

(c) Let $p(t)$ be a polynomial such that $p(t_i) = a_i$ for all $0 \le i \le n$. So,

$$
p(t) = \sum_{1 \le i < j \le n} a_i \frac{(t - t_j)}{(t_i - t_j)}
$$

Suppose $p(t)$ and $f(t)$ are two unique polynomials of degree n such that they have same values for $t = t_0, t_1, \ldots, t_n$.

Then deg($p(t) - f(t)$) $\leq n$ and $p(t) - f(t)$ for all t.

Let $q(t)$ be a polynomial such that $q(t_i) = 0$ for all $0 \leq i \leq n$. Then,

$$
q(t) = p(t) - f(t)
$$

Now suppose

$$
q(t) = \sum_{i=0}^{n} \lambda_i t^i
$$

where λ_i 's are not all zero. Now,

$$
\det\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ t_1 & t_2 & t_3 & \cdots & t_n \\ t_1^2 & t_2^2 & t_3^2 & \cdots & t_n^2 \\ \vdots & \vdots & & \vdots \\ t_1^{n-1} & t_2^{n-1} & t_3^{n-1} & \cdots & t_n^{n-1} \end{bmatrix} = \prod_{0 \le i < j \le n} (t_i - t_j) \neq 0 \tag{2}
$$

But if $q(t_i) = 0$ for all $0 \leq i \leq n$, then

$$
\sum_{0 \le i \le n} \lambda_i R_i = 0
$$

where R_i is the i^{th} row. This implies,

$$
R_k = \sum_{0 \le i < j < n} \frac{\lambda_i}{\lambda_j} R_i = 0
$$

a contradiction to equation (2).

Thus, $p(t) = f(t)$. Problem_{8:} Let $A =$ $\sqrt{ }$ $\overline{1}$ 1 2 3 4 5 10 20 30 40 50 3 6 7 18 14 1 . Consider the map $T(x) = Ax$ from \mathbb{R}^5 to

 \mathbb{R}^3 . Find an explicit basis of \mathbb{R}^5 and an explicit basis of \mathbb{R}^3 such that with respect to these bases the matrix of T has matrix $M =$ identity of suitable size in top left corner and zeros everywhere else. Solution 8:

Given,

$$
A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ 3 & 6 & 7 & 18 & 14 \end{array} \right]
$$

Using row operations $R_2 \to R_2-10R_1$ and $R_3 \to R_3-3R_1$, we get the matrix

$$
\left[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 6 & -1 \end{array}\right]
$$

Now by $R_2 \leftrightarrow R_3$, we get the matrix

$$
\left[\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & -2 & 6 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]
$$

Using row operation $R_2 \to -\frac{1}{2}R_2$, we get the matrix

$$
\left[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & -3 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]
$$

Using column operations $C_i = C_i - iC_1$ for $i = 2, 3, 4, 5$, we get the matrix

$$
\left[\begin{array}{cccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -3 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]
$$

Now using column operations $C_4 \rightarrow C_4 + 3C_3$ and $C_5 \rightarrow C_5 - \frac{1}{2}C_3$, we get the matrix $\overline{1}$

$$
\left[\begin{array}{cccc}1 & 0 & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 0\end{array}\right]
$$

Now using $C_2 \leftrightarrow C_3$, we get the matrix

$$
\left[\begin{array}{cccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]
$$

We know that every row and column operations on a matrix are respectively left and right multiplication of the matrix by corresponding elementary matrices.

Therefore, A is left multiplied by

$$
\begin{bmatrix} 1 & 0 & 0 \ 0 & -\frac{1}{2} & 0 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ -10 & 1 & 0 \ -3 & 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} 1 & 0 & 0 \ 0 & 0 & -\frac{1}{2} \ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ -10 & 1 & 0 \ -3 & 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} \frac{1}{2} & 0 & 0 \ \frac{3}{2} & 0 & -\frac{1}{2} \ -10 & 1 & 0 \end{bmatrix}
$$

Also, A is right multiplied by

$$
\begin{bmatrix} 1 & -2 & -3 & -4 & -5 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 3 & -\frac{1}{2} \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ \end{bmatrix}
$$

$$
= \begin{bmatrix} 1 & -2 & -3 & -13 & -\frac{7}{2} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \ \end{bmatrix}
$$

$$
= \begin{bmatrix} 1 & -3 & -2 & -13 & -\frac{7}{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 3 & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

Thus,

$$
A' = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & 0 & -\frac{1}{2} \\ -10 & 1 & 0 \end{bmatrix} A \begin{bmatrix} 1 & -3 & -2 & -13 & -\frac{7}{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 3 & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

So,

$$
A' = \begin{bmatrix} 1 & 0 & 0 \\ 10 & 0 & 1 \\ -3 & -2 & 0 \end{bmatrix}^{-1} A \begin{bmatrix} 1 & -3 & -2 & -13 & -\frac{7}{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 3 & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = Q^{-1}AP
$$

where

$$
Q = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 10 & 0 & 1 \\ -3 & -2 & 0 \end{array} \right]
$$

and

We had old basis of \mathbb{R}^3 and \mathbb{R}^5 as the standard basis. Thus, new basis of \mathbb{R}^3 is $(e_1, e_2, e_3)Q = ((1, 10, -3)^t, (0, 0, -2)^t, (0, 1, 0)^t)$ and new basis of \mathbb{R}^5 is $(e_1, e_2, e_3, e_4, e_5)P = ((1, 0, 0, 0, 0)^t, (-3, 0, 1, 0, 0)^t,$ $(-2, 1, 0, 0, 0)^t, (-13, 0, 3, 1, 0)^t, (-\frac{7}{2})$ $\frac{7}{2}, 0, -\frac{1}{2}$ $(\frac{1}{2}, 0, 1)^t$.