Algebra 1 HW 3

Nirjhar Nath nirjhar@cmi.ac.in

Problem 1:

(a) Let $\mathbf{B} = ((1, 2, 0)^t, (2, 1, 2)^t, (3, 1, 1)^t)$ and $\mathbf{B}' = ((0, 1, 0)^t, (1, 0, 1)^t, (2, 1, 0)^t)$. Determine the basechange matrix P from B to B' .

(b) Determine the basechange matrix in \mathbb{R}^2 , when the old basis is the standard basis $\mathbf{E} = (e_1, e_2)$ and the new basis is $\mathbf{B} = (e_1 + e_2, e_1 - e_2)$.

(c) Determine the basechange matrix in \mathbb{R}^n , when the old basis is the standard basis **E** and the new basis is **B** = $(e_n, e_{n-1}, \ldots, e_1)$.

Solution 1:

(a) Since P is the basechange matrix from **B** to **B'**, so $B' = BP$. Suppose for some x_1, y_1, z_1 ,

$$
\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y_1 \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + z_1 \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}
$$

i.e.,

$$
\begin{cases}\nx_1 + 2y_1 + 3z_1 = 0 \\
2x_1 + y_1 + z_1 = 1 \\
2y_1 + z_1 = 0\n\end{cases}
$$

So we have $x_1 = \frac{4}{7}$ $\frac{4}{7}, y_1 = \frac{1}{7}$ $\frac{1}{7}, z_1 = -\frac{2}{7}$ $\frac{2}{7}$. Suppose for some x_2, y_2, z_2 ,

$$
\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y_2 \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + z_2 \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}
$$

i.e.,

$$
\begin{cases}\nx_2 + 2y_2 + 3z_2 = 1 \\
2x_2 + y_2 + z_2 = 0 \\
2y_2 + z_2 = 1\n\end{cases}
$$

So we have $x_2 = -\frac{2}{7}$ $\frac{2}{7}, y_2 = \frac{3}{7}$ $\frac{3}{7}, z_2 = \frac{1}{7}$ $\frac{1}{7}$. Suppose for some x_3, y_3, z_3 ,

$$
\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y_3 \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + z_3 \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}
$$

i.e.,

$$
\begin{cases}\nx_3 + 2y_3 + 3z_3 = 2 \\
2x_3 + y_3 + z_3 = 1 \\
2y_3 + z_3 = 0\n\end{cases}
$$

So we have $x_3 = \frac{2}{7}$ $\frac{2}{7}, y_3 = -\frac{3}{7}$ $\frac{3}{7}, z_3 = \frac{6}{7}$ $\frac{6}{7}$. Thus, the basechange matrix from B to B' is

$$
P = \begin{bmatrix} \frac{4}{7} & -\frac{2}{7} & \frac{2}{7} \\ \frac{1}{7} & \frac{3}{7} & -\frac{3}{7} \\ -\frac{2}{7} & \frac{1}{7} & \frac{6}{7} \end{bmatrix}
$$

(b) We have, $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. So,
 $e_1 + e_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $e_1 - e_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Suppose $\mathbf{B} = \mathbf{E}P$, where P is the basechange matrix in \mathbb{R}^2 , i.e.,

$$
\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] P = IP
$$

So, $P =$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ 1 −1 1 .

(c) Suppose the basechange matrix in \mathbb{R}^n is P, when the old basis is the standard basis **E** and the new basis is $\mathbf{B} = (e_n, e_{n-1}, \ldots, e_1)$, i.e., $\mathbf{B}P = \mathbf{E}$. But the matrix formed by the standard basis vectors is the $n \times n$ identity matrix I. So, $P = \mathbf{B}^{-1}$.

Problem 2:

Prove that every $m \times n$ matrix A of rank 1 has the form $A = XY^{t}$, where X, Y are m - and *n*-dimensional column vectors. How uniquely determined are these vectors?

Solution 2:

If A is a $m \times n$ matrix A of rank 1, then A has only one independent column

and every other column is a multiple of it. Let $X =$ $\sqrt{ }$ \overline{x}_1 $\overline{x_2}$. . . \bar{x}_m 1 $\overline{}$ $\in \mathbb{R}^m$, $Y =$

$$
\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n \text{ and}
$$

$$
A = XY^t = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} [y_1 \ y_2 \ \cdots \ y_n] = [y_1 X \ y_2 X \ \cdots \ y_n X]
$$

So every column of A is a multiple of the column vector X , i.e., the matrix ${\cal A}$ has rank 1.

Problem 3:

Let A and B be 2×2 matrices. Determine the matrix of the operator $T : M \rightsquigarrow AMB$ on the space $F^{2\times 2}$ of 2×2 matrices, with respect to the basis $(e_{11}, e_{12}, e_{21}, e_{22})$ of $F^{2\times 2}$.

Solution₂:

Solution 3:
\nLet
$$
A = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}
$$
 and $B = \begin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$.
\nTherefore,
\n
$$
T(e_{11}) = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} a_{11} & 0 \ a_{21} & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} \ a_{21}b_{21} & a_{21}b_{22} \end{bmatrix}
$$
\n
$$
= a_{11}b_{11}(e_{11}) + a_{11}b_{12}(e_{12}) + a_{21}b_{21}(e_{21}) + a_{21}b_{22}(e_{22})
$$

Now,

$$
T(e_{12}) = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 & a_{11} \\ 0 & a_{21} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{21} & a_{11}b_{22} \\ a_{21}b_{21} & a_{21}b_{22} \end{bmatrix}
$$

$$
= a_{11}b_{21}(e_{11}) + a_{11}b_{22}(e_{12}) + a_{21}b_{21}(e_{21}) + a_{21}b_{22}(e_{22})
$$

Now,

$$
T(e_{21}) = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}
$$

$$
= \begin{bmatrix} a_{12} & 0 \\ a_{22} & 0 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{12}b_{11} & a_{12}b_{12} \\ a_{22}b_{11} & a_{22}b_{12} \end{bmatrix}
$$

$$
= a_{12}b_{11}(e_{11}) + a_{12}b_{12}(e_{12}) + a_{22}b_{11}(e_{21}) + a_{22}b_{12}(e_{22})
$$

and

$$
T(e_{22}) = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 & a_{12} \\ 0 & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{12}b_{21} & a_{12}b_{22} \\ a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}
$$

$$
= a_{12}b_{21}(e_{11}) + a_{12}b_{22}(e_{12}) + a_{22}b_{21}(e_{21}) + a_{22}b_{22}(e_{22})
$$

So we have

$$
T = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{21} & a_{12}b_{11} & a_{12}b_{21} \ a_{11}b_{12} & a_{11}b_{22} & a_{12}b_{12} & a_{12}b_{22} \ a_{21}b_{21} & a_{21}b_{21} & a_{22}b_{11} & a_{22}b_{21} \ a_{21}b_{12} & a_{21}b_{22} & a_{22}b_{12} & a_{22}b_{22} \end{bmatrix}
$$

Problem 4:

Prove the below theorem using row and column operations: Given an $m \times n$ matrix A, there are invertible matrices Q and P such that $A'=Q^{-1}AP$ has the form $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.

Problem 5: Determine the dimensions of the kernel and the image of the linear operator T on the space \mathbb{R}^n defined by

$$
T(x_1, \ldots, x_n)^t = (x_1 + x_n, x_2 + x_n - 1, \ldots, x_n + x_1)^t
$$

Solution 5:

The linear operator T on the space \mathbb{R}^n is defined by

$$
T(x_1, \ldots, x_n)^t = (x_1 + x_n, x_2 + x_n - 1, \ldots, x_n + x_1)^t
$$

Therefore,

$$
T(x_1e_1 + x_2e_2 + \dots + x_ne_n) = x_1T(e_1) + x_2T(e_2) + \dots + x_nT(e_n)
$$

= $(x_1 + x_n, x_2 + x_n - 1, \dots, x_n + x_1)^t$

Now, since e_i 's are standard basis vectors, so

$$
T(e_i) = e_i + e_{n-i+1}
$$

for $i = 1, 2, \cdots, n$. So,

$$
T = \left[\begin{array}{cccccc} 1 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 1 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 1 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 1 \end{array} \right]
$$

In RREF, T' has a 1 in the last row at position $\frac{n}{2}$ 2 or $n-1$ 2 depending on whether *n* is even or odd.
For even *n*, dim(ker *T*)= $\frac{n}{2}$ 2 , dim(im T)= dim V – dim(ker T)= $n - \frac{n}{2}$ 2 = n 2 , and for odd *n*, dim(ker $T=\frac{n-1}{2}$ 2 , dim(im $T= n$ $n-1$ 2 = $n+1$ 2 .

Problem 6: Let $T: V \to V$ be a linear operator on a vector space of dimension 2. Assume that T is not multiplication by a scalar. Prove that there is a vector v in V such that $(v, T(v))$ is a basis of V, and describe the matrix of T with respect to that basis.

Solution 6:

Since $T: V \to V$ is a linear operator on a vector space of dimension 2 and T is not multiplication by a scalar, therefore for a given vector $v \in V$, $T(v) \neq \lambda v$, where $\lambda \in F$, i.e., $\alpha v + \beta T(v) = 0$ only if $\alpha = 0$ and $\beta = 0$, i.e., $(v, T(v))$ are linearly independent.

Clearly, T and $T(v)$ are distinct because if not, then $T(v) = 1 \cdot v$, which is not possible. Also, since V has dimension 2, so it spans and hence $(v, T(v))$ is a basis for all $v \in V$.

Problem 7:

(a) Show that Hom (V, W) is a vector space under pointwise addition and scalar multiplication.

(b) Suppose $\mathbf{B} = \{v_1, \ldots, v_p\}$ is a basis for V and $\mathbf{C} = \{w_1, \ldots, w_q\}$ is a basis for W. For any linear map T from V to W, we constructed a q by p matrix with respect to given bases. Call this matrix $f(T)$. Show that f is an isomorphism from the vector space Hom (V, W) to the vector space of all q by p matrices with real entries.

(c) Take T_1 and T_2 in Hom (V, W) and S in Hom (W, U) for some vector space U. Show that $(S \text{ composed with } (T_1 + T_2)) = (S \text{ composed with } T_1)$ $+$ (S composed with T_2). State without proof analogous formula using R in $Hom(U, V)$. In light of what we did in class (about composition of linear maps vis a vis their matrices) and part (b) above, these formulas translate into a property of matrix operations. State this property and explain very briefly.

Solution 7:

(a) Let $S, T \in$ Hom (V, W) be linear maps. So, for $v \in V$, we define

$$
(S+T)(v) = S(v) + T(v)
$$

So for $v_1, v_2, v \in V$, we have

$$
(S+T)(v_1 + v_2) = S(v_1 + v_2) + T(v_1 + v_2)
$$

= S(v₁) + S(v₂) + T(v₁) + T(v₂)
= S(v₁) + T(v₁) + S(v₂) + T(v₂)
= (S + T)(v₁) + (S + T)(v₂)

and

$$
(S+T)(\lambda v) = S(\lambda v) + T(\lambda v)
$$

$$
= \lambda S(v) + \lambda T(v)
$$

$$
= \lambda (S + T)(v)
$$

Thus, $S + T$ is a linear map and $S + T \in$ Hom (V, W) . Now for $v \in V$, we define

$$
(\lambda T)(v) = \lambda T(v)
$$

So for $v_1, v_2, v \in V$, we have

$$
(\lambda T)(v_1 + v_2) = \lambda (T(v_1 + v_2))
$$

$$
= \lambda \{T(v_1) + T(v_2)\}
$$

$$
= \lambda T(v_1) + \lambda T(v_2)
$$

$$
= (\lambda T)(v_1) + (\lambda T)(v_2)
$$

and

$$
(\lambda T)(\mu v) = \lambda T(\mu V)
$$

$$
= \lambda \mu T(v)
$$

$$
= \mu \lambda T(v)
$$

$$
= \mu (\lambda T)(v)
$$

Thus, λT is a linear map and $\lambda T \in$ Hom (V, W) .

The remaining axioms are clearly satisfied and hence $Hom(V, W)$ is a vector space under pointwise addition and scalar multiplication.

(b) Given that $\mathbf{B} = \{v_1, \ldots, v_p\}$ is a basis for V and $\mathbf{C} = \{w_1, \ldots, w_q\}$ is a basis for W, so dim $\mathbf{B} = p$ and dim $\mathbf{C} = q$. Now,

$$
f(T) = \left[\begin{array}{cccc} \vdots & \vdots & & \vdots \\ T(v_1) & T(v_2) & \cdots & T(v_p) \\ \vdots & \vdots & & \vdots \end{array} \right]
$$

which is a $q \times p$ matrix.

If $f(T) = 0$, then $T(v_i) = 0$ $\forall i = 1, 2, ..., p$. But since v_i 's are basis vectors, we have $T = 0$. So f is injective.

Now, let $R = (r_{jk})$ be any $q \times p$ matrix and we define

$$
T(v_i) = \sum_{j=1}^{q} r_{jk} w_j
$$

for $k = 1, 2, ..., n$. Then we have $f(T) = R$. So f is surjective. Thus, f is bijective. (c) We take dim $V = p$, dim $W = q$ and dim $U = r$ with bases (v_1, \ldots, v_p) , (w_1, \ldots, w_n) and (u_1, \ldots, u_r) respectively. Now we take $x = a_1v_1 + \cdots + a_pv_p$. So, $T_1(x) = a_1T_1(v_1) + \cdots + a_pT_1(v_p)$ and $T_2(x) = a_1T_2(v_1) + \cdots + a_pT_2(v_p)$. Therefore,

$$
T_1(x) + T_2(x) = a_1 \{ T_1(v_1) + T_2(v_1) \} + \dots + a_p \{ T_1(v_p) + T_2(v_p) \}
$$

= $a_1 (T_1 + T_2)(v_1) + \dots + a_p (T_1 + T_2)(v_p)$

or,

$$
(T_1 + T_2)(x) = T_1(x) + T_2(x)
$$

Now,

$$
S(T_1(x)) = a_1 S(T_1(v_1)) + \dots + a_p S(T_1(v_p) \text{ and } S(T_2(x)) = a_1 S(T_2(v_1)) + \dots + a_p S(T_2(v_p))
$$

Therefore,

$$
S(T_1(x)) + S(T_2(x)) = a_1(S(T_1 + T_2))(v_1) + \cdots + a_p(S(T_1 + T_2))(v_p)
$$

or,

$$
(S(T_1 + T_2))(x) = S(T_1(x)) + S(T_2(x))
$$

or,

$$
S \circ (T_1 + T_2) = S \circ T_1 + S \circ T_2
$$

Problem 8:

(a) Let V, W, U be finite dimensional vector spaces, T a linear map from V to W and S linear map from W to U. Thus ST (i.e. the composition T followed by S) is a linear map from V to U . Prove using only abstract vector space language that rank(ST) is less than or equal to rank(S) as well as rank(T). (b) Let A and B be matrices such that the product AB is defined. Prove using only matrices (without any mention of vector spaces) that $rank(AB)$ is less than or equal to rank(A) as well as $rank(B)$.

(c) Your proofs in (a) and (b) should be independent of each other. Now explain briefly but precisely how either of (a) and (b) can deduced from the other.

Solution:

(a) Given $T: V \to W$ and $S: W \to U$ are linear maps. So, $ST: V \to U$. Consider a matrix $M \in \mathbb{R}^{mn}$.

So, Rank (M) = dim(Range M), Rank (ST) = dim(Range ST) and Rank (S) =

dim (Range S) and Rank (T) = dim(Range T).

We have in general, if a vector space W is a subspace of a vector space V , then dim(W) \leq dim(V).

Now for any vector $y \in \text{Range } ST$, $\exists x$ such that $y = (ST)x = S(Tx) = Sz$, taking $z = Tx$. So, $y \in \text{Range } S$, i.e., Range ST is a subset of Range S. So, Rank $(ST) = \dim(Range ST) \leq \dim(Range S) = Rank (S)$. Also, $z \in$

Range T, so $\text{span}(y)$ is a subspace of T.

Therefore, dim(span (y))= dim(U) \leq dim(Range T) and hence dim(Range ST) \leq Rank (T) .

(b) Let
$$
A = \begin{bmatrix} \vdots & \vdots & & \vdots \\ a_1 & a_2 & \cdots & a_q \\ \vdots & \vdots & & \vdots \end{bmatrix} \in \mathbb{R}^{pq}, B \begin{bmatrix} \vdots & \vdots & & \vdots \\ b_1 & b_2 & \cdots & b_r \\ \vdots & \vdots & & \vdots \end{bmatrix} \in \mathbb{R}^{qr}.
$$

So, $AB = \begin{bmatrix} \vdots & \vdots & & \vdots \\ b_1A & b_2A & \cdots & b_rA \\ \vdots & \vdots & & \vdots \end{bmatrix}$, i.e., the columns of AB are the linear

combination of the columns of A , with B as scalar multiples. Therefore, column space of A is a subspace of the column space of A.

Therefore, Rank (AB) = dim(column space of AB)< dim(column space of A)= Rank (A) . \overline{a}

Also,
$$
A = \begin{bmatrix} \cdots & a'_1 & \cdots \\ \cdots & a'_2 & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & a'_p & \cdots \end{bmatrix}
$$
 and $A = \begin{bmatrix} \cdots & b'_1 & \cdots \\ \cdots & b'_2 & \cdots \\ \vdots & \vdots \\ \cdots & b'_q & \cdots \end{bmatrix}$.
So, $AB = \begin{bmatrix} \cdots & a'_1 & \cdots \\ \cdots & b'_2 & \cdots \\ \cdots & a'_p & \cdots \\ \vdots & \vdots \\ \cdots & a'_p & \cdots \end{bmatrix}$, i.e., the rows of AB are linear combination of

the rows B with A as scalar multiples. Therefore, the row space of AB is a subspace of the row space of B.

Therefore, Rank (AB) = dim(row space of AB) \leq dim(row space of B) = Rank $(B).$