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Problem 1:
Which of the following subsets is a subspace of the vector space F n×n of n×n
matrices with coefficients in F?
(a) symmetric matrices (At = A),
(b) invertible matrices,
(c) upper triangular matrices.
Find a basis for the space of n× n symmetric matrices (At = A).
Problem 2:
Prove that the three functions x2, cos x, and ex are linearly independent.
Problem 3:
Let (X1, . . . , Xm) and (Y1, . . . , Yn) be bases for Rm and Rn, respectively. Do
the mn matrices XiY

t
j form a basis for the vector space Rm×n of all m × n

matrices?
Problem 4:
(a) Prove that the set B = ((1, 2, 0)t, (2, 1, 2)t, (3, 1, 1)t) is a basis of R3.
(b) Find the coordinate vector of the vector v = (1, 2, 3)t with respect to
this basis.
Problem 5:
Let B = (v1, . . . , vn) be a basis of a vector space V . Prove that one can get
from B to any other basis B′ by a finite sequence of steps of the following
types:
(i) Replace vi by vi + avj, i 6= j, for some a in F ,
(ii) Replace vi by cvi for some c 6= 0,
(iii) Interchange vi and vj.
Problem 6:

Let A =

 1 2 3 4 5
10 20 30 40 50
3 6 7 18 14

. Using only row operations on A, find a

basis for (i) Null space of A, (ii) Column space of A, and (iii) Row space of
A.
Problem 7:
Let A be an r× c matrix with the associated function f(x) = Ax. Show that
any two the following three statements implies the third.
(i) A is a square matrix, i.e., r = c.
(ii) Ax = 0 has only the trivial solution (i.e., f is injective).
(iii) Ax = b has a solution for every vector b (i.e., f is surjective).
Problem 8:
Let A be a square matrix. Show that the following are equivalent.
(a) A is invertible.
(b) The function f(x) = Ax is a bijection.
(c) There exists matrix L such that LA = I.
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(d) There exists matrix R such that AR = I.
(e) RREF(A) = identity matrix I.
(f) A is a product of elementary matrices.
Solution 1:
(a) Let F1 be the set of all symmetric matrices i.e., F1 = {A | At = A}. For
any n × n symmetric matrices A = (aij) and B = (bkl) such that aij = aji
and bkl = blk ∀i, j, k, l ∈ {1, 2, . . . , n}, we have

A+B = (aij) + (bkl) = (aij + bkl) = (aji + blk) = (A+B)t

and
λA = λ(aij) = (λaij) = (λaji) = (λA)t

for any λ ∈ F . So, A+B ∈ F1 and λA ∈ F1. So, F1 is a subspace of F n×n.
(b) Let F2 be the set of all invertible matrices. Then, the n × n square
matrices A = (aij) and −A = (−aij), with not all of aij zeroes, are invertible.
But then we have A + (−A) = 0, the zero matrix, which is not invertible.
Thus, F2 is not a subspace of F n×n

(c) Let F3 be the set of all upper triangular matrices. Let A,B ∈ F3 and

A =


a11 a12 . . . a1n
0 a22 . . . a2n
...

...
0 0 . . . ann

 and B =


b11 b12 . . . b1n
0 b22 . . . b2n
...

...
0 0 . . . bnn


So,

A+B =


a11 + b11 a12 + b12 . . . a1n + b1n

0 a22 + b22 . . . a2n + b2n
...

...
0 0 . . . ann + bnn


and

λA =


λa11 λa12 . . . λa1n

0 λa22 . . . λa2n
...

...
0 0 . . . λann


which are upper triangular matrices. So, A + B ∈ F3 and λA ∈ F3. So, F3

is a subspace of F n×n

Solution 2:
We assume, to the contrary, that x2, cos x and ex are linearly dependent i.e.,
∃ α, β, γ ∈ R, not all zeroes, such that αx2 + βex + γ cosx = 0 ∀x. Let
f(x) = x2 + βex + γ cosx. We have, f(x) = 0 ⇒ all coefficients of f(x)
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are zeroes, i.e., α = β = γ = 0, which contradicts that x2, cosx and ex are
linearly dependent. Thus, x2, cos x and ex are linearly independent.
Solution 3:
Since (X1, . . . , Xm) and (Y1, . . . , Yn) are bases for Rm and Rn, respectively,
so they are linearly independent and they span. We first prove that the mn
matrices XiY

t
j are linearly independent. So, assuming wlog that i < j and

for any i < k < j, we take ci = 1∑
j

∑
i

cidjXiYj =
∑
i

∑
j

ciXidjYj =
∑
i

ciXi

∑
j

djYj 6= 0

since Xi’s and Yj’s form a basis and hence linearly independent. Thus, the
mn matrices XiY

t
j are also linearly independent.

Solution 4:
(a) Suppose for some x, y, z,

x

 1
2
0

+ y

 2
1
2

+ z

 3
1
1

 =

 0
0
0


i.e., we have a system of three equations

x+ 2y + 3z = 0, 2x+ y + z = 0, 2y + z = 0

To solve the system, we consider the augmented matrix

[A|B] =

 1 2 3 0
2 1 1 0
0 2 1 0


Using row operations R2 → R2 − 2R1, R1 → R1 −R3, we have the matrix 1 0 2 0

0 −3 −5 0
0 2 1 0


Using row operation R3 → 3R3 + 2R2, we have the matrix 1 0 2 0

0 −3 −5 0
0 0 −7 0


Using row operations R2 → −1

3
R2, R3 → −1

7
R3, we have the matrix 1 0 2 0

0 1 5
3

0
0 0 1 0


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Now using row operations R1 → R1 − 2R3, R2 → R2 − 5
3
R2, we have the

matrix (with A in RREF)  1 0 0 0
0 1 0 0
0 0 1 0


Thus, x = y = z = 0 and so B is linearly independent. Also, since RREF(A)
has a pivot in every row, so it spans R3 and hence B is a basis of R3.
(b) Suppose for some x, y, z,

x

 1
2
0

+ y

 2
1
2

+ z

 3
1
1

 =

 1
2
3


i.e., we have a system of three equations

x+ 2y + 3z = 1, 2x+ y + z = 2, 2y + z = 3

To solve the system, we consider the augmented matrix

[A|P ] =

 1 2 3 1
2 1 1 2
0 2 1 3


Using row operations R2 → R2 − 2R1, R1 → R1 −R3, we have the matrix 1 0 2 −2

0 −3 −5 0
0 2 1 3


Using row operation R3 → 3R3 + 2R2, we have the matrix 1 0 2 −2

0 −3 −5 0
0 0 −7 9


Using row operations R2 → −1

3
R2, R3 → −1

7
R3, we have the matrix 1 0 2 −2

0 1 5
3

0
0 0 1 −9

7


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Now using row operations R1 → R1 − 2R3, R2 → R2 − 5
3
R3, we have the

matrix (with A in RREF)  1 0 0 4
7

0 1 0 15
7

0 0 1 −9
7


So, the coordinate vector of v is x

y
z

 =

 4
7
15
7

−9
7

 =

(
4

7
,
15

7
,−9

7

)t

Solution 5:
(i) Given that B = (v1, . . . , vn) is a basis of a vector space V . If we replace
vi by vi+avj, i 6= j for some a in F , then for some c1, c2, . . . , cn and assuming
wlog that i < j, we have

c1v1 + c2v2 + · · ·+ ci(vi + avj) + · · ·+ cjvj + · · · cnvn

= c1vi + c2v2 + · · ·+ civi + · · ·+ (cia+ cj)vj + · · ·+ cnvn

and hence the span of B and B′ are equal. So we can get from B to B′ by
the given step.
(ii) If we replace vi by cvi for some c 6= 0, then for some c1, c2, . . . , cn, we
have

c1v1 + c2v2 + · · ·+ ci(cvi) + · · ·+ cnvn

= c1v1 + c2v2 + · · ·+ (cci)vi + · · ·+ cnvn

and hence the span of B and B′ are equal. So we can get from B to B′ by
the given step.
(iii) If we interchange vi and vj, assuming wlog that i < j, we have

c1v1 + c2v2 + · · ·+ civj + · · ·+ cjvi · · ·+ cnvn

= c1v1 + c2v2 + · · ·+ cjvi + · · ·+ civj · · ·+ cnvn

and hence the span of B and B′ are equal. So we can get from B to B′ by
the given step.
Solution 6:
(i) Null space of A = {X | AX = 0}. We consider the augmented matrix 1 2 3 4 5 0

10 20 30 40 50 0
3 6 7 18 14 0


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Using row operations R2 → R2 − 10R1, R1 → R1 − 3R3, we have the matrix 1 2 0 −14 8 0
0 0 0 0 0 0
0 0 1 6 −1 0


Interchanging rows R2 and R3, we have the matrix (A reduced to RREF) 1 2 0 −14 8 0

0 0 1 6 −1 0
0 0 0 0 0 0


Thus, the solution set is

−2x2 + 14x4 − 8x5
x2

−6x4 + x5
x4
x5

 = x2


−2
1
0
0
0

+ x4


14
0
−6
1
0

+ x5


−8
0
1
0
1


So, a basis for the null space ofA is ((−2, 1, 0, 0, 0)t, (14, 0,−6, 1, 0)t, (−8, 0, 1, 0, 1)t).
(ii) Since the 1st and 3rd columns of RREF(A) contain pivots, so the set of
the 1st and 3rd columns of A i.e., ((1, 10, 3)t, (3, 30, 7)t) is a basis for the col-
umn space of A.
(iii) Since the 1st and 2nd rows of RREF(A) contain pivots, so a basis for the
row space is ((1, 2, 0,−14, 8), (0, 0, 1, 6,−1))
Solution 7:
Let A be an r × c matrix with the associated function f(x) = Ax.
We first prove that (i) and (ii) implies (iii).
We know that Ax = 0 has only the trivial solution (i.e., f is injective) means
that every column of RREF(A) has a pivot. Since A is a square matrix, i.e.,
r = c, it means that every row of RREF(A) also has a pivot. Thus, f is
surjective.
Now we prove that (i) and (iii) implies (ii).
We know that Ax = b has a solution for every vector b (i.e., f is surjective)
means that every row of RREF(A) has a pivot. Since A is a square matrix,
i.e., r = c, it means that every column of RREF(A) also has a pivot. Thus,
f is injective.
Now we prove that (ii) and (iii) implies (i).
We know that Ax = 0 has only the trivial solution (i.e., f is injective) means
that every column of RREF(A) has a pivot. Again, Ax = b has a solution
for every vector b (i.e., f is surjective) means that every row of RREF(A)
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has a pivot. Thus, A is a square matrix i.e., r = c.
Solution 8:
Clearly, (a)⇒(c) and (d).
We prove that (a)⇒(b).
For any matrices A,B (such that AB exists), we define fA(x) = Ax and
fB(x) = Bx. Then AB = I ⇒ fA ◦ fB = fI , identity map from Rr → Rr

and BA = I ⇒ fB ◦ fA = fI , identity map from Rc → Rc. These equations
say that fA and fB are both bijective.
Now we prove that (a)⇒(e).
Since (a)⇒(b), so we can use the fact that f is bijective, which means that
every row and every column of RREF(A) has a pivot. Thus, RREF(A) = I,
the identity matrix.
Now we prove that (a)⇒(f).
Each row operation that used to reduce A to I can be represented by an
elementary matrix. Suppose n row operations are required to reduce A to I.
So,

En · · ·E2E1A = I

Since A is invertible and inverse of a matrix is unique if it exists, so

A−1 = En · · ·E2E1

Since the inverse of elementary matrices are also elementary matrices, so we
write A as a product of elementary matrices as

A = (A−1)−1 = (En · · ·E2E1)
−1 = E1

−1E2
−1 · · ·En

−1

Clearly (e)⇒ (c).
Now we prove (b)⇒ (a).
Since f is bijective, so every row and every column of RREF(A) has a pivot,
which implies that RREF(A) = I. Since (e)⇒ (c), so ∃ a matrix B, which
is the product of elementary matrices, such that BA = I. Multiplying to the
left by B−1, we have A = B−1 i.e., A is invertible.
Since (b) implies (a) and (a) implies the others, so (b) implies the others.
Clearly, (c) and (d) implies (a) and so they imply the others. Also, (e)
implies (c), so it implies the others. Also since (f) implies (a), so it implies
the others.
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