Algebra 1 HW 2

Nirjhar Nath nirjhar@cmi.ac.in

Problem 1:

Which of the following subsets is a subspace of the vector space $F^{n \times n}$ of $n \times n$ matrices with coefficients in F ?

(a) symmetric matrices $(A^t = A)$,

(b) invertible matrices,

(c) upper triangular matrices.

Find a basis for the space of $n \times n$ symmetric matrices $(A^t = A)$.

Problem 2:

Prove that the three functions x^2 , cos x, and e^x are linearly independent. Problem 3:

Let (X_1, \ldots, X_m) and (Y_1, \ldots, Y_n) be bases for \mathbb{R}^m and \mathbb{R}^n , respectively. Do the mn matrices $X_i Y_j^t$ form a basis for the vector space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices?

Problem 4:

(a) Prove that the set $\mathbf{B} = ((1, 2, 0)^t, (2, 1, 2)^t, (3, 1, 1)^t)$ is a basis of \mathbb{R}^3 .

(b) Find the coordinate vector of the vector $v = (1, 2, 3)^t$ with respect to this basis.

Problem 5:

Let $\mathbf{B} = (v_1, \ldots, v_n)$ be a basis of a vector space V. Prove that one can get from \bf{B} to any other basis \bf{B}' by a finite sequence of steps of the following types:

(i) Replace v_i by $v_i + av_j$, $i \neq j$, for some a in F,

(ii) Replace v_i by cv_i for some $c \neq 0$,

(iii) Interchange v_i and v_j .

Problem 6:

 $\sqrt{ }$ 1 2 3 4 5 1

Let $A =$ $\overline{1}$ 10 20 30 40 50 3 6 7 18 14 . Using only row operations on ^A, find a

basis for (i) Null space of A, (ii) Column space of A, and (iii) Row space of A.

Problem 7:

Let A be an $r \times c$ matrix with the associated function $f(x) = Ax$. Show that any two the following three statements implies the third.

(i) A is a square matrix, i.e., $r = c$.

(ii) $Ax = 0$ has only the trivial solution (i.e., f is injective).

(iii) $Ax = b$ has a solution for every vector b (i.e., f is surjective).

Problem 8:

Let A be a square matrix. Show that the following are equivalent.

(a) A is invertible.

(b) The function $f(x) = Ax$ is a bijection.

(c) There exists matrix L such that $LA = I$.

(d) There exists matrix R such that $AR = I$.

(e) RREF (A) = identity matrix I.

(f) A is a product of elementary matrices.

Solution 1:

(a) Let F_1 be the set of all symmetric matrices i.e., $F_1 = \{A \mid A^t = A\}$. For any $n \times n$ symmetric matrices $A = (a_{ij})$ and $B = (b_{kl})$ such that $a_{ij} = a_{ji}$ and $b_{kl} = b_{lk} \ \forall i, j, k, l \in \{1, 2, ..., n\}$, we have

$$
A + B = (a_{ij}) + (b_{kl}) = (a_{ij} + b_{kl}) = (a_{ji} + b_{lk}) = (A + B)^t
$$

and

$$
\lambda A = \lambda(a_{ij}) = (\lambda a_{ij}) = (\lambda a_{ji}) = (\lambda A)^t
$$

for any $\lambda \in F$. So, $A + B \in F_1$ and $\lambda A \in F_1$. So, F_1 is a subspace of $F^{n \times n}$. (b) Let F_2 be the set of all invertible matrices. Then, the $n \times n$ square matrices $A = (a_{ij})$ and $-A = (-a_{ij})$, with not all of a_{ij} zeroes, are invertible. But then we have $A + (-A) = 0$, the zero matrix, which is not invertible. Thus, F_2 is not a subspace of $F^{n \times n}$

(c) Let F_3 be the set of all upper triangular matrices. Let $A, B \in F_3$ and

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ 0 & b_{22} & \dots & b_{2n} \\ \vdots & & & \vdots \\ 0 & 0 & \dots & b_{nn} \end{bmatrix}
$$

So,

$$
A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ 0 & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} + b_{nn} \end{bmatrix}
$$

and

$$
\lambda A = \begin{bmatrix}\n\lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\
0 & \lambda a_{22} & \dots & \lambda a_{2n} \\
\vdots & & & \vdots \\
0 & 0 & \dots & \lambda a_{nn}\n\end{bmatrix}
$$

which are upper triangular matrices. So, $A + B \in F_3$ and $\lambda A \in F_3$. So, F_3 is a subspace of $F^{n \times n}$

Solution 2:

We assume, to the contrary, that x^2 , cos x and e^x are linearly dependent i.e., $\exists \alpha, \beta, \gamma \in \mathbb{R}$, not all zeroes, such that $\alpha x^2 + \beta e^x + \gamma \cos x = 0 \,\forall x$. Let $f(x) = x^2 + \beta e^x + \gamma \cos x$. We have, $f(x) = 0 \Rightarrow$ all coefficients of $f(x)$

are zeroes, i.e., $\alpha = \beta = \gamma = 0$, which contradicts that x^2 , cos x and e^x are linearly dependent. Thus, x^2 , cos x and e^x are linearly independent. Solution 3:

Since (X_1, \ldots, X_m) and (Y_1, \ldots, Y_n) are bases for \mathbb{R}^m and \mathbb{R}^n , respectively, so they are linearly independent and they span. We first prove that the mn matrices $X_i Y_j^t$ are linearly independent. So, assuming wlog that $i < j$ and for any $i < k < j$, we take $c_i = 1$

$$
\sum_{j} \sum_{i} c_i d_j X_i Y_j = \sum_{i} \sum_{j} c_i X_i d_j Y_j = \sum_{i} c_i X_i \sum_{j} d_j Y_j \neq 0
$$

since X_i 's and Y_j 's form a basis and hence linearly independent. Thus, the mn matrices $X_i Y_j^t$ are also linearly independent.

Solution 4:

(a) Suppose for some x, y, z ,

$$
x \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + z \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

i.e., we have a system of three equations

$$
x + 2y + 3z = 0, 2x + y + z = 0, 2y + z = 0
$$

To solve the system, we consider the augmented matrix

$$
[A|B] = \left[\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \end{array}\right]
$$

Using row operations $R_2 \to R_2 - 2R_1, R_1 \to R_1 - R_3$, we have the matrix

$$
\left[\begin{array}{ccc|c} 1 & 0 & 2 & 0 \\ 0 & -3 & -5 & 0 \\ 0 & 2 & 1 & 0 \end{array}\right]
$$

Using row operation $R_3 \rightarrow 3R_3 + 2R_2$, we have the matrix

$$
\left[\begin{array}{ccc|c}\n1 & 0 & 2 & 0 \\
0 & -3 & -5 & 0 \\
0 & 0 & -7 & 0\n\end{array}\right]
$$

Using row operations $R_2 \to -\frac{1}{3}R_2, R_3 \to -\frac{1}{7}R_3$, we have the matrix

Now using row operations $R_1 \rightarrow R_1 - 2R_3, R_2 \rightarrow R_2 - \frac{5}{3}R_2$, we have the matrix (with A in RREF)

Thus, $x = y = z = 0$ and so **B** is linearly independent. Also, since RREF(A) has a pivot in every row, so it spans \mathbb{R}^3 and hence **B** is a basis of \mathbb{R}^3 . (b) Suppose for some x, y, z ,

$$
x\begin{bmatrix} 1\\2\\0 \end{bmatrix} + y\begin{bmatrix} 2\\1\\2 \end{bmatrix} + z\begin{bmatrix} 3\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}
$$

i.e., we have a system of three equations

$$
x + 2y + 3z = 1, 2x + y + z = 2, 2y + z = 3
$$

To solve the system, we consider the augmented matrix

$$
[A|P] = \begin{bmatrix} 1 & 2 & 3 & | & 1 \\ 2 & 1 & 1 & | & 2 \\ 0 & 2 & 1 & | & 3 \end{bmatrix}
$$

Using row operations $R_2 \to R_2 - 2R_1, R_1 \to R_1 - R_3$, we have the matrix

$$
\left[\begin{array}{ccc|c} 1 & 0 & 2 & -2 \\ 0 & -3 & -5 & 0 \\ 0 & 2 & 1 & 3 \end{array}\right]
$$

Using row operation $R_3 \rightarrow 3R_3 + 2R_2$, we have the matrix

$$
\left[\begin{array}{ccc|c} 1 & 0 & 2 & -2 \\ 0 & -3 & -5 & 0 \\ 0 & 0 & -7 & 9 \end{array}\right]
$$

Using row operations $R_2 \to -\frac{1}{3}R_2, R_3 \to -\frac{1}{7}R_3$, we have the matrix

Now using row operations $R_1 \rightarrow R_1 - 2R_3, R_2 \rightarrow R_2 - \frac{5}{3}R_3$, we have the matrix (with A in RREF)

$$
\left[\begin{array}{ccc|c}\n1 & 0 & 0 & \frac{4}{7} \\
0 & 1 & 0 & \frac{15}{7} \\
0 & 0 & 1 & -\frac{9}{7}\n\end{array}\right]
$$

So, the coordinate vector of v is

$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{4}{7} \\ \frac{15}{7} \\ -\frac{9}{7} \end{bmatrix} = \left(\frac{4}{7}, \frac{15}{7}, -\frac{9}{7} \right)^t
$$

Solution 5:

(i) Given that $\mathbf{B} = (v_1, \ldots, v_n)$ is a basis of a vector space V. If we replace v_i by $v_i + av_j$, $i \neq j$ for some a in F, then for some c_1, c_2, \ldots, c_n and assuming wlog that $i < j$, we have

$$
c_1v_1 + c_2v_2 + \dots + c_i(v_i + av_j) + \dots + c_jv_j + \dots + c_nv_n
$$

$$
= c_1v_i + c_2v_2 + \dots + c_iv_i + \dots + (c_ia + c_j)v_j + \dots + c_nv_n
$$

and hence the span of B and B' are equal. So we can get from B to B' by the given step.

(ii) If we replace v_i by cv_i for some $c \neq 0$, then for some c_1, c_2, \ldots, c_n , we have

$$
c_1v_1 + c_2v_2 + \dots + c_i(cv_i) + \dots + c_nv_n
$$

= $c_1v_1 + c_2v_2 + \dots + (cc_i)v_i + \dots + c_nv_n$

and hence the span of B and B' are equal. So we can get from B to B' by the given step.

(iii) If we interchange v_i and v_j , assuming wlog that $i < j$, we have

$$
c_1v_1 + c_2v_2 + \dots + c_iv_j + \dots + c_jv_i + \dots + c_nv_n
$$

$$
= c_1v_1 + c_2v_2 + \dots + c_jv_i + \dots + c_iv_j + \dots + c_nv_n
$$

and hence the span of B and B' are equal. So we can get from B to B' by the given step.

Solution 6:

(i) Null space of $A = \{X \mid AX = 0\}$. We consider the augmented matrix

$$
\left[\begin{array}{cccc|c}\n1 & 2 & 3 & 4 & 5 & 0\\
10 & 20 & 30 & 40 & 50 & 0\\
3 & 6 & 7 & 18 & 14 & 0\n\end{array}\right]
$$

Using row operations $R_2 \to R_2 - 10R_1, R_1 \to R_1 - 3R_3$, we have the matrix

$$
\left[\begin{array}{cccc|c}1 & 2 & 0 & -14 & 8 & 0\\0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 1 & 6 & -1 & 0\end{array}\right]
$$

Interchanging rows R_2 and R_3 , we have the matrix (A reduced to RREF)

$$
\left[\begin{array}{cccc|c}1 & 2 & 0 & -14 & 8 & 0\\0 & 0 & 1 & 6 & -1 & 0\\0 & 0 & 0 & 0 & 0 & 0\end{array}\right]
$$

Thus, the solution set is

$$
\begin{bmatrix} -2x_2 + 14x_4 - 8x_5 \ x_2 \\ -6x_4 + x_5 \ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 14 \\ 0 \\ -6 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -8 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}
$$

So, a basis for the null space of A is $((-2, 1, 0, 0, 0)^t, (14, 0, -6, 1, 0)^t, (-8, 0, 1, 0, 1)^t)$. (ii) Since the 1st and 3rd columns of $RREF(A)$ contain pivots, so the set of the 1st and 3rd columns of A i.e., $((1, 10, 3)^t, (3, 30, 7)^t)$ is a basis for the column space of A.

(iii) Since the 1st and 2nd rows of RREF(A) contain pivots, so a basis for the row space is $((1, 2, 0, -14, 8), (0, 0, 1, 6, -1))$

Solution 7:

Let A be an $r \times c$ matrix with the associated function $f(x) = Ax$. We first prove that (i) and (ii) implies (iii).

We know that $Ax = 0$ has only the trivial solution (i.e., f is injective) means that every column of $RREF(A)$ has a pivot. Since A is a square matrix, i.e., $r = c$, it means that every row of RREF(A) also has a pivot. Thus, f is surjective.

Now we prove that (i) and (iii) implies (ii).

We know that $Ax = b$ has a solution for every vector b (i.e., f is surjective) means that every row of $RREF(A)$ has a pivot. Since A is a square matrix, i.e., $r = c$, it means that every column of RREF(A) also has a pivot. Thus, f is injective.

Now we prove that (ii) and (iii) implies (i).

We know that $Ax = 0$ has only the trivial solution (i.e., f is injective) means that every column of RREF(A) has a pivot. Again, $Ax = b$ has a solution for every vector b (i.e., f is surjective) means that every row of $RREF(A)$

has a pivot. Thus, A is a square matrix i.e., $r = c$.

Solution 8: Clearly, $(a) \Rightarrow (c)$ and (d) .

We prove that $(a) \Rightarrow (b)$.

For any matrices A, B (such that AB exists), we define $f_A(x) = Ax$ and $f_B(x) = Bx$. Then $AB = I \Rightarrow f_A \circ f_B = f_I$, identity map from $\mathbb{R}^r \to \mathbb{R}^r$ and $BA = I \Rightarrow f_B \circ f_A = f_I$, identity map from $\mathbb{R}^c \to \mathbb{R}^c$. These equations say that f_A and f_B are both bijective.

Now we prove that $(**a**) \Rightarrow (**e**)$.

Since (a)⇒(b), so we can use the fact that f is bijective, which means that every row and every column of $RREF(A)$ has a pivot. Thus, $RREF(A)=I$, the identity matrix.

Now we prove that $(a) \Rightarrow (f)$.

Each row operation that used to reduce A to I can be represented by an elementary matrix. Suppose n row operations are required to reduce A to I . So,

$$
E_n\cdots E_2E_1A=I
$$

Since A is invertible and inverse of a matrix is unique if it exists, so

$$
A^{-1} = E_n \cdots E_2 E_1
$$

Since the inverse of elementary matrices are also elementary matrices, so we write A as a product of elementary matrices as

$$
A = (A^{-1})^{-1} = (E_n \cdots E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} \cdots E_n^{-1}
$$

Clearly $(e) \Rightarrow (c)$.

Now we prove
$$
(b) \Rightarrow (a)
$$
.

Since f is bijective, so every row and every column of $RREF(A)$ has a pivot, which implies that RREF(A) = I. Since (e) \Rightarrow (c), so \exists a matrix B, which is the product of elementary matrices, such that $BA = I$. Multiplying to the left by B^{-1} , we have $A = B^{-1}$ i.e., A is invertible.

Since (b) implies (a) and (a) implies the others, so (b) implies the others. Clearly, (c) and (d) implies (a) and so they imply the others. Also, (e) implies (c) , so it implies the others. Also since (f) implies (a) , so it implies the others.