Algebra 1 HW 1

Nirjhar Nath nirjhar@cmi.ac.in

Problem 1.1:

(i) Compute $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^n$.

Let D be the diagonal matrix with diagonal entries d_1, \ldots, d_n , and let $A = (a_{ij})$ be an arbitrary $n \times n$ matrix. Compute the products DA and AD.

- (ii) A square matrix A is *nilpotent* if $A^k = 0$ for some $k > 0$. Prove that if A is nilpotent, then $I + A$ is invertible. Do this by finding the inverse.
- (iii) Find infinitely many matrices B such that $BA = I_2$ when

$$
A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}
$$

and prove that there is no matrix C such that $AC = I_3$.

(iv) Find each 2×2 matrix that commutes with all 2×2 matrices.

Problem 1.2:

(i) Find all solutions of the system of equations $AX = B$ when

$$
A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 3 & 0 & 0 & 4 \\ 1 & -4 & -2 & 2 \end{bmatrix} \text{ and } B = (\mathbf{a}) \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, (\mathbf{b}) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, (\mathbf{c}) \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}
$$

(ii) The matrix below is based on the Pascal triangle. Find its inverse.

$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}
$$

(iii) Prove that if a product AB of $n \times n$ matrices is invertible, so are the factors A and B.

Problem 1.3: The *trace* of a square matrix is the sum of its diagonal entries:

trace
$$
A = a_{11} + a_{22} + \cdots + a_{nn}
$$
.

Show that trace $(A + B)$ = trace A + trace B , that trace AB = trace BA , and that if B is invertible, then trace $A = \text{trace } BAB^{-1}$.

Show that the equation $AB - BA = I$ has no solution in real $n \times n$ matrices A and B.

Solution 1.1

(i) By the method of matrix multiplication, we have

$$
\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + a \times 0 & 1 \times b + a \times 1 \\ 0 \times 1 + 1 \times 0 & 0 \times b + 1 \times 1 \end{bmatrix} = \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix}
$$

\n**Claim:**
$$
\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & na \\ 0 & 1 \end{bmatrix}
$$

\n**Proof:** We use induction.
\nClearly for $n = 1$,
$$
\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^1 = \begin{bmatrix} 1 & 1a \\ 0 & 1 \end{bmatrix}
$$
 is true.
\nWe assume that the statement is true for $n = k$, i.e.,
\n
$$
\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^k = \begin{bmatrix} 1 & ka \\ 0 & 1 \end{bmatrix}
$$

\nTherefore,
\n
$$
\begin{bmatrix} 1 & a \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & a \end{bmatrix} \begin{bmatrix} 1 & a \end{bmatrix}^k
$$

$$
\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^{k}
$$

=
$$
\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & ka \\ 0 & 1 \end{bmatrix}
$$

=
$$
\begin{bmatrix} 1 \times 1 + a \times 0 & 1 \times ka + a \times 1 \\ 0 \times 1 + 1 \times 0 & 0 \times ka + 1 \times 1 \end{bmatrix}
$$

=
$$
\begin{bmatrix} 1 & (k+1)a \\ 0 & 1 \end{bmatrix}
$$

Thus, the statement is also true for $n = k + 1$. Hence, by the method of induction, we have $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^n =$ $\left[\begin{array}{cc} 1 & na \\ 0 & 1 \end{array}\right].$

Now, if D is the diagonal matrix with diagonal entries d_1, \ldots, d_n , and $A = (a_{ij})$ is an arbitrary $n \times n$ matrix, then the required products are $DA = (d_i a_{ij})$ and $AD = (a_{ij} d_j)$, which are again $n \times n$ matrices. \square

(ii) If A is a nilpotent matrix, then $A^k = 0$ for some $k > 0$. Let $B := I - A + A^2 - \cdots + (-1)^{k-1} A^{k-1}$. Therefore, $(I + A)B = (I + A)\{I - A + A^2 - \cdots + (-1)^{k-1}A^{k-1}\}$ $=\{I-A+A^2-\cdots+(-1)^{k-1}A^{k-1}\}+\{A-A^2+A^3-\cdots+(-1)^{k-1}A^k\}$ $= I + (-1)^{k-1} A^k = I$ Similarly, $B(I + A) = \{I - A + A^2 - \cdots + (-1)^{k-1}A^{k-1}\}\ (I + A)$ $=(I + A) - (A + A²) + (A² + A³) - \cdots + (-1)^{k-1}(A^{k-1} + A^k)$

 $= I + (-1)^{k-1} A^k = I$ Therefore,

$$
(I + A)B = B(I + A) = I
$$

i.e., $I + A$ is invertible and it's inverse is $(I + A)^{-1} = B$.

(iii) Let
$$
B = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}
$$
. Thus,
\n
$$
BA = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2a+b+c & 3a+2b+c \\ 2d+e+f & 3d+2e+f \end{bmatrix}
$$
\nNow, if $BA = I_2$, i.e., if $\begin{bmatrix} 2a+b+c & 3a+2b+c \\ 2d+e+f & 3d+2e+f \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then
\n $b+c = 1-2a$ and $2b+c = -3a \Rightarrow b = -1-a$ and $c = 2-a$. Also,
\n $e+f = -2d$ and $2e+f = 1-3d \Rightarrow e = 1-d$ and $f = -1-d$.
\nTherefore, \exists infinitely many matrices $B = \begin{bmatrix} a & -1-a & 2-a \\ d & 1-d & -1-d \end{bmatrix}$ such
\nthat $BA = I_2$.
\nAgain, let $C = \begin{bmatrix} p & q & r \\ s & t & u \end{bmatrix}$. Thus,
\n
$$
AC = \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} p & q & r \\ s & t & u \end{bmatrix} = \begin{bmatrix} 2p+3s & 2q+3t & 2r+3u \\ p+2s & q+2t & r+2u \\ p+s & q+t & r+u \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
.
\nIn particular, $p + 2s = p + s = 0 \Rightarrow p = s = 0$. But this gives
\n $2p+3s = 0$, a contradiction. Therefore, there is no matrix C such that
\n $AC = I_3$.

(iv) Let
$$
P = \begin{bmatrix} p & q \\ r & s \end{bmatrix}
$$
 be a matrix that commutes with any arbitrary matrix
\n
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.
$$
 Then we have

$$
AP = PA
$$

or,

$$
\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\left[\begin{array}{cc}p&q\\r&s\end{array}\right]=\left[\begin{array}{cc}p&q\\r&s\end{array}\right]\left[\begin{array}{cc}a&b\\c&d\end{array}\right]
$$

or,

$$
\begin{bmatrix} ap+br & aq+bs \ cp+cq & bp+dq \ p+cr & dq+ds \end{bmatrix} = \begin{bmatrix} ap+cq & bp+dq \ ar+cs & br+ds \end{bmatrix}
$$

or,

$$
br = cq, aq + bs = bp + dq, cp + cr = ar + cs
$$

But since the equation $br = cq$ is true for any arbitrary values of b and c, so $q = r = 0$.

Since $q = 0$, so $aq + bs = bp + dq \Rightarrow bs = bp \Rightarrow s = p$, if $b \neq 0$. But even if $b = 0$ and $s = p$, the equation $bs = bp$ is still true.

Since $r = 0$, so $cp + cr = ar + cs \Rightarrow cp = cs \Rightarrow p = s$, if $c \neq 0$. But even if $c = 0$ and $p = s$, the equation $bs = bp$ is still true.

Thus, $P =$ $\lceil p \rceil$ $0 \quad p$ 1 $= p$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ = pI_2 is a matrix that commutes with all 2×2 matrices.

Solution 1.2

(i) (a) We consider the augmented matrix

$$
[A|B] = \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 3 & 0 & 0 & 4 & 0 \\ 1 & -4 & -2 & 2 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_2 \to R_2 - 3R_1} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & -6 & -3 & 1 & 0 \\ 1 & -4 & -2 & 2 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_3 \to R_3 - R_1} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & -6 & -3 & 1 & 0 \\ 0 & -6 & -3 & 1 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_3 \to R_3 - R_2} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & -6 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_2 \to -\frac{1}{6}R_2} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_1 \to R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & \frac{4}{3} & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Thus, for arbitrary $x_3, x_4, x_1 = -\frac{4}{3}$ $\frac{4}{3}x_4$ and $x_2 = -\frac{1}{2}$ $rac{1}{2}x_3 + \frac{1}{6}$ $rac{1}{6}x_4.$ (b) We consider the augmented matrix

$$
[A|B] = \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 3 & 0 & 0 & 4 & 1 \\ 1 & -4 & -2 & 2 & 0 \end{bmatrix}
$$

$$
\xrightarrow{R_2 \to R_2 - 3R_1} \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -6 & -3 & 1 & -2 \\ 1 & -4 & -2 & 2 & 0 \end{bmatrix}
$$

$$
\xrightarrow{R_3 \to R_3 - R_1} \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -6 & -3 & 1 & -2 \\ 0 & -6 & -3 & 1 & -1 \end{bmatrix}
$$

$$
\xrightarrow{R_3 \to R_3 - R_2} \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -6 & -3 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

The last row implies that $0 = 1$. So the given system of equations $AX = B$ is inconsistent, i.e., has no solution.

(c) We consider the augmented matrix

$$
[A|B] = \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 3 & 0 & 0 & 4 & 2 \\ 1 & -4 & -2 & 2 & 2 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_2 \to R_2 - 3R_1} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & -6 & -3 & 1 & 2 \\ 1 & -4 & -2 & 2 & 2 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_3 \to R_3 - R_1} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & -6 & -3 & 1 & 2 \\ 0 & -6 & -3 & 1 & 2 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_3 \to R_3 - R_2} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & -6 & -3 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_2 \to -\frac{1}{6}R_2} \begin{bmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_1 \to R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & \frac{4}{3} & \frac{2}{3} \\ 0 & 1 & \frac{1}{2} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_1 \to R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & \frac{4}{3} & \frac{2}{3} \\ 0 & 1 & \frac{1}{2} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R_1 \to R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & \frac{4}{3} & \frac{2}{3} \\ 0 & 1 & \frac{1}{2} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Thus, for arbitrary $x_3, x_4, x_1 = \frac{2}{3} - \frac{4}{3}$ $\frac{4}{3}x_4$ and $x_2 = -\frac{1}{3} - \frac{1}{2}$ $\frac{1}{2}x_3 + \frac{1}{6}$ $\frac{1}{6}x_4.$ \Box

(ii) Let
$$
A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}
$$
. Thus,
\n
$$
[A|I_5] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

Using row operations $R_5 \rightarrow R_5 - R_4$, $R_4 \rightarrow R_4 - R_3$, $R_3 \rightarrow R_3 - R_2$, $R_2 \rightarrow R_2 - R_1$, we get the matrix

$$
\left[\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 & 0 & 0 & -1 & 1 \end{array}\right]
$$

Using row operations $R_5 \rightarrow R_5 - R_4$, $R_4 \rightarrow R_4 - R_3$, $R_3 \rightarrow R_3 - R_2$, we get the matrix

Using row operations $R_5 \to R_5 - R_4$, $R_4 \to R_4 - R_3$, we get the matrix

Using row operation $R_5 \to R_5 - R_4$, we get the matrix

$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ -1 & 3 & -3 & 1 & 0 \\ 1 & -4 & 6 & -4 & 1 \end{bmatrix} = [I_5|A^{-1}]
$$

Therefore, the inverse of the matrix A is

$$
A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ -1 & 3 & -3 & 1 & 0 \\ 1 & -4 & 6 & -4 & 1 \end{bmatrix}.
$$

 \Box

(iii) We shall first prove the following Lemma.

Lemma: If P and Q are square matrices such that $PQ = I$, then $QP = I$.

Proof: Let x_1, x_2, \ldots, x_n be a basis of a space. First we prove that Qx_1, Qx_2, \ldots, Qx_n is also a basis by proving that they are linearly independent. We assume, to the contrary, that they are not, i.e., $\exists c_1, c_2, \ldots c_n$, not all zero, such that

$$
c_1Qx_1 + c_2Qx_2 + \cdots + c_nQx_n = 0
$$

Multiplying this equation from the left by P , we have

$$
c_1PQx_1 + c_2PQx_2 + \cdots c_nPQx_n = 0
$$

Using $PQ = I$, we have

$$
c_1x_1 + c_2x_2 + \cdots c_nx_n = 0
$$

i.e., the x_i 's are linearly dependent, which is a contradiction to the fact that x_i 's form a basis. Thus, Qx_i 's form a basis.

Since Qx_1, Qx_2, \ldots, Qx_n is a basis, every vector y can be represented as a linear combination of those vectors, i.e., for any vector y there exists some vector x such that $Qx = y$.

Now, proving $QP = I$ is same as proving that for any vector y, we have $QPy = y$. Since we have proved that for any vector y there exists some vector x such that $Qx = y$. Thus, for any vector y , we have

$$
QPy = QPQx = QIx = Qx = y
$$

 \Box

Since the $n \times n$ matrix AB is invertible, so \exists a $n \times n$ matrix C such that $(AB)C = I$. By associativity of product of matrices, we have $A(BC) = I$. By the above Lemma, we have $(BC)A = I$. Therefore, A is invertible and $A^{-1} = BC$, a $n \times n$ matrix.

Also, we have $C(AB) = I$. By associativity of product of matrices, we have $(CA)B = I$. Again, by the above Lemma, we have $B(CA) = I$. Therefore, B is also invertible and $B^{-1} = CA$, a $n \times n$ matrix. \square

Solution 1.3: Let

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & & & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix}
$$

Therefore,

$$
A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & & & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nn} + b_{nn} \end{bmatrix}
$$

1

 $\frac{1}{2}$ \vert $\overline{1}$ $\overline{ }$

So, trace $(A + B) = (a_{11} + b_{11}) + (a_{12} + b_{12}) + \cdots + (a_{nn} + b_{nn})$ $=(a_{11} + a_{12} + \cdots + a_{nn}) + (b_{11} + b_{12} + \cdots + b_{nn})$ $=$ trace A + trace B

Now,

$$
AB = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \dots & \sum_{i=1}^{n} a_{1i}b_{in} \\ \sum_{i=1}^{n} a_{21}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \dots & \sum_{i=1}^{n} a_{2i}b_{in} \\ \vdots & & & \vdots \\ \sum_{i=1}^{n} a_{ni}b_{i1} & \sum_{i=1}^{n} a_{ni}b_{i2} & \dots & \sum_{i=1}^{n} a_{ni}b_{in} \end{bmatrix}
$$

and

$$
BA = \begin{bmatrix} \sum_{i=1}^{n} a_{i1}b_{1i} & \sum_{i=1}^{n} a_{i2}b_{1i} & \dots & \sum_{i=1}^{n} a_{in}b_{1i} \\ \sum_{i=1}^{n} a_{i1}b_{21} & \sum_{i=1}^{n} a_{i2}b_{2i} & \dots & \sum_{i=1}^{n} a_{in}b_{2i} \\ \vdots & & & \vdots \\ \sum_{i=1}^{n} a_{i1}b_{ni} & \sum_{i=1}^{n} a_{i2}b_{ni} & \dots & \sum_{i=1}^{n} a_{in}b_{ni} \end{bmatrix}
$$

So, trace
$$
AB = \sum_{i=1}^{n} a_{1i}b_{i1} + \sum_{i=1}^{n} a_{2i}b_{i2} + \cdots + \sum_{i=1}^{n} a_{ni}b_{in}
$$

\n
$$
= \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ki}b_{ik}
$$
\n
$$
= \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki}b_{ik}
$$
\n
$$
= \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik}b_{ki}
$$
\n
$$
= \sum_{i=1}^{n} a_{i1}b_{1i} + \sum_{i=1}^{n} a_{i2}b_{2i} + \cdots + \sum_{i=1}^{n} a_{in}b_{ni}
$$
\n
$$
= \text{trace } BA
$$

Now,

trace BAB^{-1} = trace $(BA)B^{-1}$ = trace $B^{-1}(BA)$ = trace $(B^{-1}B)A$ = trace IA = trace A

To prove the second part of the problem, we first prove that

trace
$$
(A - B)
$$
 = trace A - trace B

We have,

trace
$$
(A - B)
$$
 = trace = trace $(A + (-B))$ = trace A + trace $(-B)$

It is clear that trace $(-B) = -\text{trace } B$, so trace $(A - B) = \text{trace } A - \text{trace } B$. Now, if the equation $AB - BA = I$ has a solution in real $n \times n$ matrices A and B , then

trace
$$
(AB - BA)
$$
 = trace I

Now using the fact that trace $(A - B)$ = trace A – trace B and trace $I = n$, we have

trace
$$
AB
$$
 – trace BA = n

Since trace $AB = \text{trace } BA$, so we have $n = 0$, a contradiction. Hence, the equation $AB - BA = I$ has no solution in real $n \times n$ matrices A and B .