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Problem 1.1:

(i) Compute

[
1 a
0 1

] [
1 b
0 1

]
and

[
1 a
0 1

]n
.

Let D be the diagonal matrix with diagonal entries d1, . . . , dn, and let
A = (aij) be an arbitrary n × n matrix. Compute the products DA
and AD.

(ii) A square matrix A is nilpotent if Ak = 0 for some k > 0. Prove that if
A is nilpotent, then I + A is invertible. Do this by finding the inverse.

(iii) Find infinitely many matrices B such that BA = I2 when

A =

 2 3
1 2
1 1


and prove that there is no matrix C such that AC = I3.

(iv) Find each 2× 2 matrix that commutes with all 2× 2 matrices.

Problem 1.2:

(i) Find all solutions of the system of equations AX = B when

A =

 1 2 1 1
3 0 0 4
1 −4 −2 2

 and B = (a)

 0
0
0

 , (b)

 1
1
0

 , (c)

 0
2
2


(ii) The matrix below is based on the Pascal triangle. Find its inverse.

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1


(iii) Prove that if a product AB of n × n matrices is invertible, so are the

factors A and B.

Problem 1.3: The trace of a square matrix is the sum of its diagonal entries:

trace A = a11 + a22 + · · ·+ ann.

Show that trace (A+B) = traceA+ traceB, that traceAB = traceBA, and
that if B is invertible, then trace A = trace BAB−1.
Show that the equation AB−BA = I has no solution in real n×n matrices
A and B.
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Solution 1.1

(i) By the method of matrix multiplication, we have[
1 a
0 1

] [
1 b
0 1

]
=

[
1× 1 + a× 0 1× b + a× 1
0× 1 + 1× 0 0× b + 1× 1

]
=

[
1 a + b
0 1

]

Claim:

[
1 a
0 1

]n
=

[
1 na
0 1

]
Proof: We use induction.

Clearly for n = 1,

[
1 a
0 1

]1
=

[
1 1a
0 1

]
is true.

We assume that the statement is true for n = k, i.e.,[
1 a
0 1

]k
=

[
1 ka
0 1

]
Therefore,[

1 a
0 1

]k+1

=

[
1 a
0 1

] [
1 a
0 1

]k
=

[
1 a
0 1

] [
1 ka
0 1

]
=

[
1× 1 + a× 0 1× ka + a× 1
0× 1 + 1× 0 0× ka + 1× 1

]
=

[
1 (k + 1)a
0 1

]
Thus, the statement is also true for n = k + 1. Hence, by the method

of induction, we have

[
1 a
0 1

]n
=

[
1 na
0 1

]
.

Now, if D is the diagonal matrix with diagonal entries d1, . . . , dn, and
A = (aij) is an arbitrary n× n matrix, then the required products are
DA = (diaij) and AD = (aijdj), which are again n× n matrices. �

(ii) If A is a nilpotent matrix, then Ak = 0 for some k > 0.
Let B := I − A + A2 − · · ·+ (−1)k−1Ak−1.
Therefore,
(I + A)B = (I + A)

{
I − A + A2 − · · ·+ (−1)k−1Ak−1}

=
{
I − A + A2 − · · ·+ (−1)k−1Ak−1}+

{
A− A2 + A3 − · · ·+ (−1)k−1Ak

}
= I + (−1)k−1Ak = I
Similarly,
B(I + A) =

{
I − A + A2 − · · ·+ (−1)k−1Ak−1} (I + A)

= (I + A)− (A + A2) + (A2 + A3)− · · ·+ (−1)k−1(Ak−1 + Ak)
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= I + (−1)k−1Ak = I
Therefore,

(I + A)B = B(I + A) = I

i.e., I + A is invertible and it’s inverse is (I + A)−1 = B. �

(iii) Let B =

[
a b c
d e f

]
. Thus,

BA =

[
a b c
d e f

] 2 3
1 2
1 1

 =

[
2a + b + c 3a + 2b + c
2d + e + f 3d + 2e + f

]

Now, if BA = I2, i.e., if

[
2a + b + c 3a + 2b + c
2d + e + f 3d + 2e + f

]
=

[
1 0
0 1

]
, then

b + c = 1− 2a and 2b + c = −3a⇒ b = −1− a and c = 2− a. Also,
e + f = −2d and 2e + f = 1− 3d⇒ e = 1− d and f = −1− d.

Therefore, ∃ infinitely many matrices B =

[
a −1− a 2− a
d 1− d −1− d

]
such

that BA = I2.

Again, let C =

[
p q r
s t u

]
. Thus,

AC =

 2 3
1 2
1 1

[ p q r
s t u

]
=

 2p + 3s 2q + 3t 2r + 3u
p + 2s q + 2t r + 2u
p + s q + t r + u


Suppose AC = I3, i.e.,

 2p + 3s 2q + 3t 2r + 3u
p + 2s q + 2t r + 2u
p + s q + t r + u

 =

 1 0 0
0 1 0
0 0 1

.

In particular, p + 2s = p + s = 0 ⇒ p = s = 0. But this gives
2p+ 3s = 0, a contradiction. Therefore, there is no matrix C such that
AC = I3. �

(iv) Let P =

[
p q
r s

]
be a matrix that commutes with any arbitrary matrix

A =

[
a b
c d

]
. Then we have

AP = PA

or, [
a b
c d

] [
p q
r s

]
=

[
p q
r s

] [
a b
c d

]
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or, [
ap + br aq + bs
cp + cr dq + ds

]
=

[
ap + cq bp + dq
ar + cs br + ds

]
or,

br = cq, aq + bs = bp + dq, cp + cr = ar + cs

But since the equation br = cq is true for any arbitrary values of b and
c, so q = r = 0.
Since q = 0, so aq + bs = bp + dq ⇒ bs = bp ⇒ s = p, if b 6= 0. But
even if b = 0 and s = p, the equation bs = bp is still true.
Since r = 0, so cp + cr = ar + cs ⇒ cp = cs ⇒ p = s, if c 6= 0. But
even if c = 0 and p = s, the equation bs = bp is still true.

Thus, P =

[
p 0
0 p

]
= p

[
1 0
0 1

]
= pI2 is a matrix that commutes

with all 2× 2 matrices. �

Solution 1.2

(i) (a) We consider the augmented matrix

[A|B] =

 1 2 1 1 0
3 0 0 4 0
1 −4 −2 2 0


R2→R2−3R1

−−−−−−−→

 1 2 1 1 0
0 −6 −3 1 0
1 −4 −2 2 0


R3→R3−R1

−−−−−−−→

 1 2 1 1 0
0 −6 −3 1 0
0 −6 −3 1 0


R3→R3−R2

−−−−−−−→

 1 2 1 1 0
0 −6 −3 1 0
0 0 0 0 0


R2→− 1

6
R2

−−−−−−→

 1 2 1 1 0
0 1 1

2
−1

6
0

0 0 0 0 0


R1→R1−2R2

−−−−−−−→

 1 0 0 4
3

0
0 1 1

2
−1

6
0

0 0 0 0 0


Thus, for arbitrary x3, x4, x1 = −4

3
x4 and x2 = −1

2
x3 + 1

6
x4.
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(b) We consider the augmented matrix

[A|B] =

 1 2 1 1 1
3 0 0 4 1
1 −4 −2 2 0


R2→R2−3R1

−−−−−−−→

 1 2 1 1 1
0 −6 −3 1 −2
1 −4 −2 2 0


R3→R3−R1

−−−−−−−→

 1 2 1 1 1
0 −6 −3 1 −2
0 −6 −3 1 −1


R3→R3−R2

−−−−−−−→

 1 2 1 1 1
0 −6 −3 1 −2
0 0 0 0 1


The last row implies that 0 = 1. So the given system of equations
AX = B is inconsistent, i.e., has no solution.

(c) We consider the augmented matrix

[A|B] =

 1 2 1 1 0
3 0 0 4 2
1 −4 −2 2 2


R2→R2−3R1

−−−−−−−→

 1 2 1 1 0
0 −6 −3 1 2
1 −4 −2 2 2


R3→R3−R1

−−−−−−−→

 1 2 1 1 0
0 −6 −3 1 2
0 −6 −3 1 2


R3→R3−R2

−−−−−−−→

 1 2 1 1 0
0 −6 −3 1 2
0 0 0 0 0


R2→− 1

6
R2

−−−−−−→

 1 2 1 1 0
0 1 1

2
−1

6
−1

3

0 0 0 0 0


R1→R1−2R2

−−−−−−−→

 1 0 0 4
3

2
3

0 1 1
2
−1

6
−1

3

0 0 0 0 0


Thus, for arbitrary x3, x4, x1 = 2

3
− 4

3
x4 and x2 = −1

3
− 1

2
x3 + 1

6
x4.

�
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(ii) Let A =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

. Thus,

[A|I5] =


1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 0 0
1 2 1 0 0 0 0 1 0 0
1 3 3 1 0 0 0 0 1 0
1 4 6 4 1 0 0 0 0 1


Using row operations R5 → R5 − R4, R4 → R4 − R3, R3 → R3 − R2,
R2 → R2 −R1, we get the matrix

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 −1 1 0 0 0
0 1 1 0 0 0 −1 1 0 0
0 1 2 1 0 0 0 1 1 0
0 1 3 3 1 0 0 0 −1 1


Using row operations R5 → R5 − R4, R4 → R4 − R3, R3 → R3 − R2,
we get the matrix

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 −1 1 0 0 0
0 0 1 0 0 1 −2 1 0 0
0 0 1 1 0 0 1 −2 1 0
0 0 1 2 1 0 0 1 −2 1


Using row operations R5 → R5−R4, R4 → R4−R3, we get the matrix

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 −1 1 0 0 0
0 0 1 0 0 1 −2 1 0 0
0 0 0 1 0 −1 3 −3 1 0
0 0 0 1 1 0 −1 3 −3 1


Using row operation R5 → R5 −R4, we get the matrix

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 −1 1 0 0 0
0 0 1 0 0 1 −2 1 0 0
0 0 0 1 0 −1 3 −3 1 0
0 0 0 0 1 1 −4 6 −4 1

 = [I5|A−1]
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Therefore, the inverse of the matrix A is

A−1 =


1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1

 .

�

(iii) We shall first prove the following Lemma.

Lemma: If P and Q are square matrices such that PQ = I, then
QP = I.
Proof: Let x1, x2, . . . , xn be a basis of a space. First we prove
that Qx1, Qx2, . . . , Qxn is also a basis by proving that they are
linearly independent. We assume, to the contrary, that they are
not, i.e., ∃ c1, c2, . . . cn, not all zero, such that

c1Qx1 + c2Qx2 + · · ·+ cnQxn = 0

Multiplying this equation from the left by P , we have

c1PQx1 + c2PQx2 + · · · cnPQxn = 0

Using PQ = I, we have

c1x1 + c2x2 + · · · cnxn = 0

i.e., the xi’s are linearly dependent, which is a contradiction to
the fact that xi’s form a basis. Thus, Qxi’s form a basis.
Since Qx1, Qx2, . . . , Qxn is a basis, every vector y can be rep-
resented as a linear combination of those vectors, i.e., for any
vector y there exists some vector x such that Qx = y.
Now, proving QP = I is same as proving that for any vector y,
we have QPy = y. Since we have proved that for any vector
y there exists some vector x such that Qx = y. Thus, for any
vector y, we have

QPy = QPQx = QIx = Qx = y

�
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Since the n × n matrix AB is invertible, so ∃ a n × n matrix C such
that (AB)C = I. By associativity of product of matrices, we have
A(BC) = I. By the above Lemma, we have (BC)A = I. Therefore, A
is invertible and A−1 = BC, a n× n matrix.
Also, we have C(AB) = I. By associativity of product of matrices, we
have (CA)B = I. Again, by the above Lemma, we have B(CA) = I.
Therefore, B is also invertible and B−1 = CA, a n× n matrix. �

Solution 1.3: Let

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

 and B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
bn1 bn2 . . . bnn


Therefore,

A + B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

an1 + bn1 an2 + bn2 . . . ann + bnn


So, trace (A + B) = (a11 + b11) + (a12 + b12) + · · · (ann + bnn)

= (a11 + a12 + · · ·+ ann) + (b11 + b12 + · · ·+ bnn)
= trace A + trace B

Now,

AB =



n∑
i=1

a1ibi1
n∑

i=1

a1ibi2 . . .
n∑

i=1

a1ibin
n∑

i=1

a21bi1
n∑

i=1

a2ibi2 . . .
n∑

i=1

a2ibin

...
...

n∑
i=1

anibi1
n∑

i=1

anibi2 . . .
n∑

i=1

anibin


and

BA =



n∑
i=1

ai1b1i
n∑

i=1

ai2b1i . . .
n∑

i=1

ainb1i
n∑

i=1

ai1b21
n∑

i=1

ai2b2i . . .
n∑

i=1

ainb2i

...
...

n∑
i=1

ai1bni
n∑

i=1

ai2bni . . .
n∑

i=1

ainbni


9



So, trace AB =
n∑

i=1

a1ibi1 +
n∑

i=1

a2ibi2 + · · ·+
n∑

i=1

anibin

=
n∑

k=1

n∑
i=1

akibik

=
n∑

i=1

n∑
k=1

akibik

=
n∑

k=1

n∑
i=1

aikbki

=
n∑

i=1

ai1b1i +
n∑

i=1

ai2b2i + · · ·+
n∑

i=1

ainbni

= trace BA
Now,

trace BAB−1 = trace (BA)B−1 = trace B−1(BA) = trace (B−1B)A = trace IA = trace A

To prove the second part of the problem, we first prove that

trace (A−B) = trace A− trace B

We have,

trace (A−B) = trace = trace (A + (−B)) = trace A + trace (−B)

It is clear that trace (−B) = −traceB, so trace (A−B) = traceA− traceB.
Now, if the equation AB − BA = I has a solution in real n× n matrices A
and B, then

trace (AB −BA) = trace I

Now using the fact that trace (A− B) = trace A− trace B and trace I = n,
we have

trace AB − trace BA = n

Since trace AB = trace BA, so we have n = 0, a contradiction.
Hence, the equation AB −BA = I has no solution in real n× n matrices A
and B. �
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