ACT I: Assignment II

Due date: 20th October 2024

- 1. All the statements proven in the class, or given in the exercise sheet / previous assignments can be used without proof. Other than that, anything you use needs to be proven.
- 2. Encouraged, but not compulsory, to write the solutions in Latex.
- 3. Allowed to discuss with others but write the solutions independently.
- 4. Total marks: 80
- 1. So far in this course we have seen multiple ways of modifying a code to get another code. In this problem, you will need to come up with more ways of constructing new codes from existing ones. Recall that the notation $(n, k, d)_q$ code is used for general code (over an alphabet of size q) with block length n, dimension k, and distance d, whereas the $[n, k, d]_q$ code stands for a linear code (over the alphabet \mathbb{F}_q) of block length n, dimension k, and distance d. Prove the following statements:
 - a) (3 marks) If there exists an $(n, k, d)_{q^m}$ code, then there also exists an $(nm, km, d')_q$ code with $d' \ge d$.
 - b) (8 marks) If there exists an $[n, k, d]_{q^m}$ code, then there also exists an $[nm, km, d']_q$ code with $d' \ge d$. Given a generator matrix *G* for the $[n, k, d]_{q^m}$ code, find a generator matrix for the $[nm, km, d']_q$ code.
 - c) (8 marks) If there exists an $[n, k_1, d_1]_q$ code and an $[n, k_2, d_2]_q$ code, then there also exists a $[2n, k_1 + k_2, \min(2d_1, d_2)]_q$ code. Given generator matrices G_1 and G_2 for the $[n, k_1, d_1]_q$ and $[n, k_2, d_2]_q$ codes, respectively, find a generator matrix for the $[2n, k_1 + k_2, \min(2d_1, d_2)]_q$ code.
 - d) (5 marks) If there exists an $(n, k, \delta n)_q$ code, then for every positive integer *m*, there also exists an $(n^m, k/m, (1 (1 \delta)^m) \cdot n^m)_{q^m}$ code.
 - e) (8 marks) If there exists an $[n, k, \delta n]_2$ code, then for every positive integer *m*, there exists an $[n^m, k, \frac{1}{2} \cdot (1 (1 2\delta)^m) \cdot n^m]_2$ code.
- 2. In class, we have seen various coding theoretic bounds. In this problem, we will see alternate proofs of some of those bounds.
 - a) First, we will prove the Plotkin bound (at least part 2 of Theorem 4.4.1 in Essential Coding Theory) via a purely combinatorial proof.
 Given an (n, k, d)_q code C with d > (1 ¹/_q)n, define

$$S = \sum_{\mathbf{c}_1 \neq \mathbf{c}_2 \in C} \Delta(\mathbf{c}_1, \mathbf{c}_2).$$

For the rest of the problem, think C as an $|C| \times n$ matrix where each row corresponds to a codeword in C. Now consider the following:

i. (6 marks) Looking at the contribution of each column in the matrix above, argue that

$$S \le \left(1 - \frac{1}{q}\right) \cdot n|C|^2.$$

ii. (2 marks) Looking at the contribution of the rows in the matrix above, argue that

$$S \ge |C|(|C|-1) \cdot d.$$

- iii. (2 marks) Conclude part 2 of Theorem 4.4.1 in Essential Coding Theory
- b) Recall the *Griesmer Bound* defined in the first assignment. It says that for an $[n, k, d]_q$ code,

$$n \ge \sum_{i=0}^{k-1} \lceil d/q^i \rceil.$$

Then, using Griesmer bound, show the following.

i. (3 marks) For any $[n, k, d]_q$,

$$k \le n - d + 1.$$

- ii. (4 marks) Part 2 of Theorem 4.4.1 in Essential Coding Theory for linear codes.
- 3. In this problem, we shall learn about the *cyclic codes*. Over the alphabet set \mathbb{F}_q , a linear code *C* of block length *n* is called a cyclic code if

$$\forall (c_0, c_1, c_2, \dots, c_{n-1}) \in C, (c_{n-1}, c_0, c_1, \dots, c_{n-2}) \in C.$$

Assume that gcd(n, q) = 1. Let

$$\mathbb{F}_{q}[x]/\langle x^{n}-1 \rangle = \left\{ a_{0} + a_{1}x + a_{2}x + \dots + a_{n-1}x^{n-1} \mid a_{i} \in \mathbb{F}_{q}, \ 0 \le i < n \right\}.$$

Observe that $\mathbb{F}_q[x]/\langle x^n - 1 \rangle$ forms a ring under polynomial addition and multiplication *modulo* $x^n - 1$. Consider the following association between the elements of \mathbb{F}_q^n and the elements of $\mathbb{F}_q[x]/\langle x^n - 1 \rangle$,

$$(a_0, a_1, a_2, \dots, a_{n-1}) \longleftrightarrow a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} \in \mathbb{F}_q[x]/\langle x^n - 1 \rangle \tag{1}$$

This natural association between the elements of \mathbb{F}_q^n and $\mathbb{F}_q[x]/\langle x^n - 1 \rangle$ gives an *isomorphism* from \mathbb{F}_q^n to $\mathbb{F}_q[x]/\langle x^n - 1 \rangle$ (considered only as an additive group). We shall often speak of a codeword **c** as the codeword **c**(*x*), using Equation 1. Extending this, over the alphabet \mathbb{F}_q , we interpret a linear code *C* of block length *n* as a subset of $\mathbb{F}_q[x]/\langle x^n - 1 \rangle$. Now show the following.

a) (5 marks) Over the alphabet \mathbb{F}_q , a linear code *C* in \mathbb{F}_q^n is cyclic if and only if *C* is an ideal in $\mathbb{F}_q[x]/\langle x^n - 1 \rangle$.

From the above problem and Problem 12 in Section 3 of Exercise Sheet, we know that every cyclic code *C* is a principal ideal in $\mathbb{F}_q[x]/\langle x^n - 1 \rangle$, that is, there exists a unique monic polynomial g(x) over \mathbb{F}_q such that every codeword is a multiple (modulo $x^n - 1$) of g(x). The polynomial g(x) is called the *generator polynomial* of the cyclic code. Note that a cyclic code is uniquely defined by its generating polynomial. Let $x^n - 1 = f_1(x)f_2(x)\cdots f_t(x)$ be the decomposition of $x^n - 1$ into irreducible factors. Because of Problem 13 in Section 3 of Exercise Sheet, these irreducible factors are different. Then, show the following.

¹An univariate polynomial is called *monic* if its leading coefficient, that is the coefficient of the highest degree monomial, is one.

- b) (4 marks) Over the alphabet \mathbb{F}_q , the generating polynomial g(x) of a cyclic code *C* of block length *n* divides $x^n 1$.
- c) (3 marks) Over the alphabet \mathbb{F}_q , describe the set of all possible cyclic codes of block length *n* in terms of their generating polynomials.
- d) (2 marks) Over the alphabet \mathbb{F}_{q} , there exists 2^{t} many distinct cyclic codes of block length *n*.
- e) (4 marks) For a cyclic code C in \mathbb{F}_q^n and its generating polynomial g(x), the dimension of C is $n \deg(g)$. Furthermore, given g(x), describe a generator matrix for C.
- f) (4 marks) Given a generator matrix G for a cyclic code C in \mathbb{F}_q^n , design an algorithm that computes the generating polynomial of C in poly(n) \mathbb{F}_q -operations.
- g) (6 marks) Let *C* be a cyclic code in \mathbb{F}_q^n and g(x) be its generating polynomial. Then, there exists a unique monic polynomial of degree $n \deg(g)$ such that any $\mathbf{c} \in \mathbb{F}_q^n$, $\mathbf{c} \in C$ if and only if $\mathbf{c}(x) \cdot h(x)$ is zero in $\mathbb{F}_q[x]/\langle x^n 1 \rangle$. The polynomial h(x) is called the *check polynomial* of *C*. Furthermore, given the check polynomial h(x), describe a parity matrix for *C*.
- h) (3 marks) Design an algorithm such that given the generating polynomial g(x) of a cyclic code *C* in \mathbb{F}_q^n as input, it outputs the check polynomial of *C* in poly(*n*) \mathbb{F}_q -operations.

Note: Observe that the BCH code is a cyclic code.