ACT I: Assignment I

Due date: 14th Spetember 2024

- 1. All the statements proven in the class or given in the practice problems can be used without proof. Other than that, anything you use needs to be proven.
- 2. Encouraged, but not compulsory, to write the solutions in Latex.
- 3. Allowed to discuss with others but write the solutions independently.
- 1. (10 marks) Let C be an $[n, k, d]_q$ code over a finite field \mathbb{F}_q with the generator matrix G. If G does not have a column containing all zeros, then show that

$$\sum_{\mathbf{c}\in C} \operatorname{wt}(\mathbf{c}) = n(q-1)q^{k-1},$$

where wt(**c**) denotes the number of nonzero coordinates in $\mathbf{c} \in \mathbb{F}_{q}^{n}$.

- 2. (20 marks) Let *C* be an $[n,k]_q$ code with the block length and the dimension of *C* are *n* and *k*, respectively. The code *C* is called *self-dual* if $C = C^{\perp}$, that is, the code *C* is the same as its dual. For any prime *q*, is there an $[8, 4]_q$ self-dual code over \mathbb{F}_q ?
- (10 marks)The set of all n₂×n₁ matrices over F₂ forms a vector space V of dimension n₁n₂. For i = 1, 2, let C_i be an [n_i, k_i, d_i]₂ linear code over F₂. Let C be the subsets of V consisting of those matrices for which every column, respectively every row, is a codeword in C₁, respectively C₂. Show that C is an [n₁n₂, k₁k₂, d₁d₂]₂ code. The code C is called *direct product* of C₁ and C₂.
- 4. (10 marks) Show that $[15, 8, 5]_2$ code does not exist.
- 5. Show the following.
 - (a) (10 marks) If there exists an $[n, k, d]_q$ code, then there exists an $[n d, k 1, d']_q$ code with $d' \ge \lfloor d/q \rfloor$.
 - (b) (5 marks) For an $[n, k, d]_q$ code,

$$n \ge \sum_{i=0}^{k-1} \lceil d/q^i \rceil.$$

It is known as Griesmer Bound.

6. (15 marks) Let $q \ge 2$ be an integer. Let $\delta \in (0, 1 - \frac{1}{q})$. Let $\epsilon \in [0, 1 - H_q(\delta)]$ and *n* be a positive integer. Let $k = (1 - H_q(\delta) - \epsilon)n$. Let *H* be an $(n - k) \times n$ matrix over \mathbb{F}_q picked uniformly and randomly. Then, show that *H* is a *parity* matrix of a code of block length *n*, rate $1 - H_q(\delta) - \epsilon$ and relative distance at least δ with probability $\ge 1 - q^{-\epsilon n}$.