ACT I: FinaL ExaAaM

1. All the statements proven in the class, or given in the exercise sheet/assignments can be used without
proof. )

2. To solve a sub-problem of a particular problem in the question paper, you can assume all its previous
sub-problems without proof.

3. Statements mentioned in the appendix section of the question paper can be assumed without proof.

4. Other than that, anything you use needs to be proven.

1. Asetof S C Isz vectors is called e-biased sample space if the following property holds: Pick a
vector X = (x1,X3,..., x;) uniformly at random from S. Then, X has bias at most €, that is, for

every nonempty subset I C [k],
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where the sum is over [F,. Observe that § = lFZk is an e-biased sample space with € = 0. In this
problem, we will look at some connections of e-biased sample space to linear codes over [F,.

(a) (4 marks) Let C be an [, k], code such that all non-zero codewords have Hamming weight
in the range [( )n, ( = ] Let G € FF*" be a generator matrix of C. Then, show that the

set of columns uf G [orms 4n e-biased sample space of size #.

(6 marks) Let C be an [, k], code such that all nonzero codewords have Hamming weight in

the range [( 1= 7) n, ( 1+7)n] where y € (0,1). Then, show that for every odd positive integer

m, there exists an [n™, k], code C’ such that all nonzero codewords have Hamming weight in

1 —aym m .
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(c) (3 marks) Let C be an [n,k]; code such that all nonzero codewords have Hamming weight

in the range [(l——z)n,(”y) ] where ¥ € (€,1). Then, show that there exists an e-biased

sample space of size
log 1/
nO( osll; )

(b)

the range

2. Let g = 2 be an integer. As we have seen in the class, the Gilbert-Varshamov bound (GV bound)
says that for every 6 € [0,1 - —) there exists a g-ary code with the rate R > 1 — H,(8) and relative
distance &, where Hy(-) dcnotes the g-array entropy function defined in the class. In the class, we
also saw a greedy cons[ruction—bascd proof for GV bound. Here, see a graph-theoretic proof for GV



bound, I.ct 4 Sn
t i, and 32 be an alphabet of size qg. Let G

1, 1 —(V EF)be ‘hose vertex sel
is X", Given vertices u = v e 30 nd,q — (‘ ,I:J be a graph whose ver
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I € V of vertices is called an independent set of G{ V1€ E if and only if Alu, v) < e om

solve the following sub-problems. nd,q. if for every u 2 v € I, {u,v] € E. Then,

et leas f

(a) (2 marks) Show that any independent set C of Gy,d,q is a g-ary code of distance d

(b) (5 marks) The degree of ycrtex in a graph G = (V, E) is the number of edges incident on that
vertex. Let D be the maximum c}‘e/%rec of any vertex in G = (V, E). Then argue that G has an

independent set of size at least L

(¢) (3 marks) Using the parts (a) and (b), prove the GV bound.

. (7 marks) Let a,, a,..., a,, be n distinct elements from the finite field . Let RS(n,k,g) be the
Reed-Solomon code of block length 1 with the evaluation points are @y, s, ..., a,, dimension is k
and the alphabet is IFq. Now consider the code RS(#, k, g)*, that is, the dual of RS(n,k,q). Design

an error-correction algorithm A for RS(n, k, q)* that runs in poly(n) IF,-operations and can correct

less than %*1 many errors. More specifically, given ay = (y1,2,...,¥n) € IF;' as input to A with
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the promise that there exists a codeword ¢ € RS(n, k,q)* such that A(y,c) < k%l it outputs c in

poly(n) IF,-operations. Observe that this gives an error correction algorithm for BCH codes.

. For any positive integer p, we use Z, to denote the set of integers {0,1,2,...,p—1}. For two
positive integers 1 and p, let [n], denote the unique positive integer in Z, we get as a remainder
after dividing m by p.
Let1 < k < 1 be positive integers and p; <pp <p3z <---<ppben distinct primes. Let K = Tﬁl] Pi
and N =[]iL,pi- Let CCZ, xZp, X=X Z,, be a code defined as follows:
Message space: Zg, that is, every message word can be treated as an integer in Zg.
Encoding: The encoding function Ecry : Zg — Zp, X Z,, % xZp s defined in the following

way: For any m € Zg,

Ecgr(m) = ([mlpy (mlpy, Mgy, o, [l )-

This code can be seen as the number-theoretic counterpart of Reed-Solomon codes. It is known as
the Chinese Remainder code and is based on the Chinese Remainder Theorem (CRT) in number
theory (see the point 3 in the Appendix).

For any two distinct messages 1y # 1 € Zy, let
A (Berr(my), Bcxr(ma)) = #{i € [n] | [my],, = [m2],,}.

Then show the following:

ks i A =n-
(5 marks) mlg’gézk (Ecrr(m1),Ecrr(my)) =n—k+1.

In the next part of the problem, we prove that there exists an efficient error correction algorithm for
Ecrr. The setup of the error-correction algorithm is the following:

Input: As input, we are giveny = (Y1, Y2 Y35+ Vn) € Zp X Zp, X=X ZLp with the promise that
there exists a message m € Zj, such that

E= ]—[ p,-<1/K—]\_]—i-. (1)

icfrtlgny
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utput: An e Zy satisfying Equation 1.

Then, show the following:

(@) (3 """"_ks) Givenay = (p1,92,3,...,p,) € Zp, %L, %-+-xZ, ,there cxists a unique m € Zj
satisfying Equation 1. "

(b) (3 marks) Design an poly(log p,,, n)-time error detection algorithm for Ecp. That is, given
any y = (¥1,92,Y3,--., V) € Zp X ZLp, % xZp , in time poly(logp,,n), decide whether
yeC.

O

(c) (4 marks) There exists a positive integer 1 < r < E such that for somgi € [n], [r]p, = 0if
and only if [m]; # y;. It is analogous to the “error-locator” polynomial in Reed-Solomon
decoding.

(d) (4 marks) There exists 1 <R < E and 0 < M < N/E integers such that

v;-R =M mod p; for all i € [n]. (2)
(¢) (4 marks) For any (Ry, M) and (R,, M,) satisfying Equation 2, show that A—d;‘- = %,
(f) (3 marks) Given an (R, M) satisfying Equation 2, we can compute the message 71 in time

poly(n,logp,). '

Note: Using the above problem, you can show that Ecgrr can correct up to —“—log:ﬁf;gp -(n—k)
. - "
many errors. You can try it as an exercise at home.

1 Appendix

1. Reducing Bias: Let S = (s,5,,...,5,) € {0,1}" be a binary string with pn many 1’s for some
p € (0,1). For some positive integer n1, let S” € {0, 1)™" be a binary string such that

m
S Fe @ 5,} .
=V T igeineln]

Then, the number of 1’s in the string S is
1 m m
Ap = 5-(1—(1—-2,0) y-n"™.
Furthermore, if m is odd, then AP is a non-decreasing function of p.

2. Upper bound for the volume of Hamming ball: Let g > 2 be an integer, and p € [0,1- -14]. Then,
WP

n 0 ' 1 SHE.
i‘_ )S/qﬁ,,(g,)é, i (?\(7’—1) < 9%
izt t=o

where H,(-) is the g-ary entropy function definelin the class.
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3. Chinese Remainder Theorem(CRT): Let py,py,...,pe be £ distinct primes. Let L = [Ti- Pi-
Then, the mapping @ : Z; — Z, XZ,, X - X Zy, defined as

D(m) = ([m]pl,[m]pz,..., [m]PC) forallmeZ;

is a bijection. Furthermore, for any m € Z;, ®(m) can be computed in time poly(¢,log pe)-

Similarly, given apointv € Z, XZ, X---XZ,,, @~1(v) can be computed in time poly(, log pe).




4. For any two positive integers M and N, we can compute M + N, M- N _
time poly(log M +log N). ' +[M/NJand M mod N in



