ACT I: FINAL EXAM

- 1. All the statements proven in the class, or given in the exercise sheet/assignments can be used without proof.
- 2. To solve a sub-problem of a particular problem in the question paper, you can assume all its previous sub-problems without proof.
- 3. Statements mentioned in the appendix section of the question paper can be assumed without proof.
- 4. Other than that, anything you use needs to be proven.
- 1. A set of $S \subseteq \mathbb{F}_2^k$ vectors is called ϵ -biased sample space if the following property holds: Pick a vector $X = (x_1, x_2, ..., x_k)$ uniformly at random from S. Then, X has bias at most ϵ , that is, for every nonempty subset $I \subseteq [k]$,

$$\left| \Pr \left(\sum_{i \in I} x_i = 0 \right) - \Pr \left(\sum_{i \in I} x_i = 1 \right) \right| \leq \epsilon,$$

where the sum is over \mathbb{F}_2 . Observe that $S = \mathbb{F}_2^k$ is an ϵ -biased sample space with $\epsilon = 0$. In this problem, we will look at some connections of ϵ -biased sample space to linear codes over \mathbb{F}_2 .

- (a) (4 marks) Let C be an $[n,k]_2$ code such that all non-zero codewords have Hamming weight in the range $\left[\left(\frac{1-\epsilon}{2}\right)n,\left(\frac{1+\epsilon}{2}\right)n\right]$. Let $G \in \mathbb{F}_2^{k \times n}$ be a generator matrix of C. Then, show that the set of columns of G forms an ϵ -biased sample space of size n.
- (b) (6 marks) Let C be an $[n,k]_2$ code such that all nonzero codewords have Hamming weight in the range $\left[\left(\frac{1-\gamma}{2}\right)n,\left(\frac{1+\gamma}{2}\right)n\right]$ where $\gamma \in (0,1)$. Then, show that for every odd positive integer m, there exists an $[n^m,k]_2$ code C' such that all nonzero codewords have Hamming weight in the range

 $\left[\left(\frac{1-\gamma^m}{2}\right)_{n,n}^{m}\left(\frac{1+\gamma^m}{2}\right)_{n}^{m}\right].$

- (c) (3 marks) Let C be an $[n,k]_2$ code such that all nonzero codewords have Hamming weight in the range $\left[\left(\frac{1-\gamma}{2}\right)n,\left(\frac{1+\gamma}{2}\right)n\right]$ where $\gamma \in (\epsilon,1)$. Then, show that there exists an ϵ -biased sample space of size ${}_{n}O\left(\frac{\log 1/\epsilon}{\log 1/\gamma}\right)$
- 2. Let $q \ge 2$ be an integer. As we have seen in the class, the *Gilbert-Varshamov bound* (GV bound) says that for every $\delta \in [0, 1 \frac{1}{q})$, there exists a q-arry code with the rate $R \ge 1 H_q(\delta)$ and relative distance δ , where $H_q(\cdot)$ denotes the q-array entropy function defined in the class. In the class, we also saw a greedy construction-based proof for GV bound. Here, see a graph-theoretic proof for GV

1

bound. Let $d = \delta n$, and Σ be an alphabet of size q. Let $G_{n,d,q} = (V, E)$ be a graph whose vertex set is Σ^n . Given vertices $\mathbf{u} \neq \mathbf{v} \in \Sigma^n$, we have the edge $\{\mathbf{u}, \mathbf{v}\} \in E$ if and only if $\Delta(\mathbf{u}, \mathbf{v}) < d$. A subset $I \subseteq V$ of vertices is called an *independent set* of $G_{n,d,q}$, if for every $\mathbf{u} \neq \mathbf{v} \in I$, $\{\mathbf{u}, \mathbf{v}\} \notin E$. Then,

at least

- (a) (2 marks) Show that any independent set C of $G_{n,d,q}$ is a q-ary code of distance d.
- (b) (5 marks) The degree of vertex in a graph G = (V, E) is the number of edges incident on that vertex. Let D be the maximum degree of any vertex in G = (V, E). Then argue that G has an independent set of size at least $\frac{|V|}{D+1}$.
- (c) (3 marks) Using the parts (a) and (b), prove the GV bound.
- 3. (7 marks) Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be n distinct elements from the finite field \mathbb{F}_q . Let $\mathrm{RS}(n,k,q)$ be the Reed-Solomon code of block length n with the evaluation points are $\alpha_1, \alpha_2, \ldots, \alpha_n$, dimension is k and the alphabet is \mathbb{F}_q . Now consider the code $\mathrm{RS}(n,k,q)^\perp$, that is, the dual of $\mathrm{RS}(n,k,q)$. Design an error-correction algorithm \mathcal{A} for $\mathrm{RS}(n,k,q)^\perp$ that runs in $\mathrm{poly}(n)$ \mathbb{F}_q -operations and can correct less than $\frac{k+1}{2}$ many errors. More specifically, given a $\mathbf{y}=(y_1,y_2,\ldots,y_n)\in\mathbb{F}_q^n$ as input to \mathcal{A} with the promise that there exists a codeword $\mathbf{c}\in\mathrm{RS}(n,k,q)^\perp$ such that $\Delta(\mathbf{y},\mathbf{c})<\frac{k+1}{2}$, it outputs \mathbf{c} in $\mathrm{poly}(n)$ \mathbb{F}_q -operations. Observe that this gives an error correction algorithm for BCH codes.
- 4. For any positive integer p, we use \mathbb{Z}_p to denote the set of integers $\{0,1,2,\ldots,p-1\}$. For two positive integers m and p, let $[m]_p$ denote the unique positive integer in \mathbb{Z}_p we get as a remainder after dividing m by p.

Let $1 \le k \le n$ be positive integers and $p_1 < p_2 < p_3 < \cdots < p_n$ be n distinct primes. Let $K = \prod_{i=1}^k p_i$ and $N = \prod_{i=1}^n p_i$. Let $C \subseteq \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_n}$ be a code defined as follows:

Message space: \mathbb{Z}_K , that is, every message word can be treated as an integer in \mathbb{Z}_K .

Encoding: The encoding function $E_{CRT}: \mathbb{Z}_K \to \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_n}$ is defined in the following way: For any $m \in \mathbb{Z}_K$,

$$E_{CRT}(m) = ([m]_{p_1}, [m]_{p_2}, [m]_{p_3}, \dots, [m]_{p_n}).$$

This code can be seen as the number-theoretic counterpart of Reed-Solomon codes. It is known as the Chinese Remainder code and is based on the Chinese Remainder Theorem (CRT) in number theory (see the point 3 in the Appendix).

For any two distinct messages $m_1 \neq m_2 \in \mathbb{Z}_k$, let

$$\Delta(\mathbb{E}_{CRT}(m_1), \mathbb{E}_{CRT}(m_2)) = \#\{i \in [n] \mid [m_1]_{p_i} \neq [m_2]_{p_i}\}.$$

Then show the following:

(5 marks)
$$\min_{m_1 \neq m_2 \in \mathbb{Z}_k} \Delta\left(\mathbb{E}_{CRT}(m_1), \mathbb{E}_{CRT}(m_2)\right) = n - k + 1.$$

In the next part of the problem, we prove that there exists an efficient error correction algorithm for E_{CRT} . The setup of the error-correction algorithm is the following:

Input: As input, we are given $\mathbf{y} = (y_1, y_2, y_3, \dots, y_n) \in \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \dots \times \mathbb{Z}_{p_n}$ with the promise that there exists a message $m \in \mathbb{Z}_k$ such that

$$E = \prod_{i \in \mathcal{M}_i \in \mathcal{M}_i} p_i < \sqrt{\frac{N}{K-1}}. \tag{1}$$

$$i \in [n] : (m) \neq \mathcal{I}_i$$

Output: An $m \in \mathbb{Z}_K$ satisfying Equation 1.

Then, show the following:

- (a) (3 marks) Given a $y = (y_1, y_2, y_3, ..., y_n) \in \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_n}$, there exists a unique $m \in \mathbb{Z}_k$ satisfying Equation 1.
- (b) (3 marks) Design an poly(log p_n , n)-time error detection algorithm for E_{CRT} . That is, given any $\mathbf{y} = (y_1, y_2, y_3, \dots, y_n) \in \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \dots \times \mathbb{Z}_{p_n}$, in time poly(log p_n , n), decide whether $\mathbf{y} \in C$.
- (c) (4 marks) There exists a positive integer $1 \le r \le E$ such that for some $i \in [n]$, $[r]_{p_i} = 0$ if and only if $[m]_i \ne y_i$. It is analogous to the "error-locator" polynomial in Reed-Solomon decoding.
- (d) (4 marks) There exists $1 \le R \le E$ and $0 \le M < N/E$ integers such that

$$y_i \cdot R = M \mod p_i \text{ for all } i \in [n].$$
 (2)

- (e) (4 marks) For any (R_1, M_1) and (R_2, M_2) satisfying Equation 2, show that $\frac{M_1}{R_1} = \frac{M_2}{R_2}$.
- (f) (3 marks) Given an (R, M) satisfying Equation 2, we can compute the message m in time poly $(n, \log p_n)$.

Note: Using the above problem, you can show that E_{CRT} can correct up to $\frac{\log p_1}{\log p_1 + \log p_n} \cdot (n-k)$ many errors. You can try it as an exercise at home.

1 Appendix

1. Reducing Bias: Let $S = (s_1, s_2, ..., s_n) \in \{0, 1\}^n$ be a binary string with pn many 1's for some $p \in (0, 1)$. For some positive integer m, let $S' \in \{0, 1\}^{n^m}$ be a binary string such that

$$S' = \left(\bigoplus_{j=1}^m s_{i_j}\right)_{i_1,i_2,\dots,i_m \in [n]}.$$

Then, the number of 1's in the string S' is

$$\Delta_p = \frac{1}{2} \cdot (1 - (1 - 2p)^m) \cdot n^m.$$

Furthermore, if m is odd, then Δ_p is a non-decreasing function of p.

2. Upper bound for the volume of Hamming ball: Let $q \ge 2$ be an integer, and $p \in [0, 1 - \frac{1}{q}]$. Then,

$$\sum_{i=0}^{pn} \binom{n}{n} \leq q^{H_q(p)n}, \qquad \sum_{i=0}^{pn} \binom{n}{i} (2-1)^i \leq q^{H_q(p)n}$$

where $H_q(\cdot)$ is the q-ary entropy function define in the class.

3. Chinese Remainder Theorem(CRT): Let $p_1, p_2, ..., p_\ell$ be ℓ distinct primes. Let $L = \prod_{i=1}^{\ell} p_i$. Then, the mapping $\Phi: Z_L \to \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_\ell}$ defined as

$$\Phi(m) = ([m]_{p_1}, [m]_{p_2}, \dots, [m]_{p_{\ell}}) \text{ for all } m \in \mathbb{Z}_L$$

is a bijection. Furthermore, for any $m \in \mathbb{Z}_L$, $\Phi(m)$ can be computed in time $\operatorname{poly}(\ell, \log p_\ell)$. Similarly, given a point $\mathbf{v} \in \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_\ell}$, $\Phi^{-1}(\mathbf{v})$ can be computed in time $\operatorname{poly}(\ell, \log p_\ell)$.

4. For any two positive integers M and N, we can compute M+N, $M\cdot N$, $\lfloor M/N \rfloor$ and $M \mod N$ in time poly(log $M+\log N$).