
Assignment 2 - ACT1
Nirjhar Nath

nirjhar@cmi.ac.in
BMC202239

1

Solution 1:
a) We have, Fqm = Fq[x]/(p(x)), where p(x) is an irreducible polynomial of degree m

over Fq. This setup implies an isomorphism between Fqm and the vector space Fm
q .

As a result, each element of Fqm can be represented as an m-tuple (or vector) over
Fq.
Given the original (n, k, d)qm code, we can replace each symbol from Fqm with its
corresponding m-tuple over Fq. Thus, each codeword in the original code, which
has length n over Fqm , is transformed into a codeword of length n · m over Fq. The
number of codewords remains the same, so the code size |C| is unchanged. Since
each codeword can be described by k symbols over Fqm , the total number of possible
codewords is

|C| = (qm)k = qkm.

Therefore, the dimension of the new code over Fq is km.
Now, we analyze the minimum distance of the new code. If two codewords differ in
at least d positions in the original (n, k, d)qm code, their transformed versions will
differ in at least d · m positions in the new (nm, km, d′)q code (since each differing
symbol in Fqm leads to m differing entries in Fq). Therefore, d′ ≥ d. Thus, given
an (n, k, d)qm code, it is possible to construct an (nm, km, d′)q code with d′ ≥ d.

b) Let G be the generator matrix for the original [n, k, d]qm code. To construct a
code over Fq, we first identify Fqm with Fq[x]/(p(x)), where p(x) is an irreducible
polynomial of degree m. This lets us view elements of Fqm as m-dimensional vectors
over Fq (from part a)). Using this identification, we define an isomorphism ϕ from
Fqm to Fm

q , where each element a ∈ Fqm is mapped to an m-dimensional vector over
Fq. Now we construct a new matrix G′ by replacing each entry gij in G with a
column vector in Fm

q , structured as follows:

G′
ij =


ϕ(gij)
xϕ(gij)

...
xm−1ϕ(gij)

 ,

where x is interpreted as a power in the field representation. This replacement
transforms each entry of G into an m × m matrix over Fq, effectively expanding G
into an [nm, km] matrix G′ over Fq.
The rows of G′ remain linearly independent because the rows of G were linearly
independent over Fqm , and ϕ is an isomorphism. Thus, the rows of G′ form a basis
for a new [nm, km, d′]q code, where d′ ≥ d. Hence, G′ is the generator matrix for
the new code over Fq.

c) Consider the new code defined by

C = {(u, u + v) | u ∈ C1, v ∈ C2}

where C1 and C2 are the original [n, k1, d1]q and [n, k2, d2]q codes, respectively.
This new code is a [2n, k1 + k2, d′]q code, with d′ = min(2d1, d2). To see why this
holds, note that if u = 0, the minimum distance is min{wt(v)} = d2, and if v = 0,
the minimum distance is 2 minu∈C1 wt(u) = 2d1.

2

When both u and v are non-zero, we have

wt(u, u + v) = wt(u) + wt(u + v) ≥ wt(u) + wt(v) − wt(u) = wt(v) ≥ min(2d1, d2).

This holds because if v has d non-zero coordinates, at most wt(u) out of them can
be made 0 by adding u. So d′ = min(2d1, d2).
A generator matrix for this code is

G =
[
G1 G1
0 G2

]

where G1 and G2 are the generator matrices for C1 and C2, respectively.

d) Given an (n, k, d)q code C where d = δn, we aim to show that for any positive
integer m, there exists an

(
nm, k

m
, (1 − (1 − δ)m) · nm

)
qm

code. To construct this
code, we use the tensor power C⊗m = C ⊗ C ⊗ · · · ⊗ C (with m copies of C).
In the original code C, the alphabet size is q, so each symbol in C is an element of the
set Σ = Fq. For the new code C⊗m, we define an alphabet of size qm, denoted by Σ′,
where Σ′ consists of all possible m-tuples over Fq: Σ′ = {(q1, q2, . . . , qm) : qi ∈ Fq}.
Thus, |Σ′| = qm.
Each codeword c = (p1, p2, . . . , pn) ∈ C is expanded in C⊗m by taking all possible
products of elements from {p1, p2, . . . , pn} across m copies of C, resulting in code-
words of length nm over Σ′. Each element in a codeword of C⊗m is represented as
an m-tuple, so the length of each codeword in the new code is nm.
Since each codeword in C is expanded to an alphabet of size qm, the number of
codewords in C⊗m remains the same as in C, giving us |C| = (qm) k

m . This implies
that the dimension of the new code over Fqm is k

m
.

To determine the minimum distance of C⊗m, we note that the minimum distance
of C is d = δn, meaning that any two distinct codewords in C differ in at least
d positions. Thus, in C, at most n − d positions can match between any two
codewords. When we expand each codeword in C to form C⊗m, each position in
the original codeword (which could match in at most n−d positions) is represented
by m symbols in C⊗m, resulting in a maximum of (n − d)m matching positions in
the new code.
Therefore, the minimum number of differing positions between any two codewords
in C⊗m is at least nm − (n − d)m. Substituting d = δn, we find that the minimum
distance d′ of C⊗m is:

d′ = nm − (n − δn)m = nm − nm · (1 − δ)m = nm · (1 − (1 − δ)m) .

Thus, the minimum distance of C⊗m is d′ = nm(1 − (1 − δ)m).
Thus, given an (n, k, δn)q code, for any positive integer m, we can construct an(
nm, k

m
, (1 − (1 − δ)m) · nm

)
qm

code.

e) If there exists an [n, k, δn]2 code, then for every positive integer m, there exists an
[nm, k, 1

2(1 − (1 − 2δ)m) · nm]2 code.

3

Let the initial code be an [n, k, d]2 code, where d = δn. Let G be the k×n generator
matrix for this code. We create a new generator matrix G′ of dimension nm × k
as follows: each column in G′ is represented by an m-tuple (i1, i2, . . . , im), where
1 ≤ ip ≤ n. We represent the ith column of G by ci, and a bit b ∈ {0, 1} is
represented as (−1)b ∈ {1, −1}.
In G′, the (i1, . . . , im)th column is defined as the sum of the columns i1, i2, . . . , im

in G. Thus, for any vector x, xG′ is an nm-length code. This construction ensures
that the new code has code length nm, and since the number of codewords remains
the same, the dimension remains k.
For any i ∈ [n], ⟨ci, x⟩ represents the ith coordinate of xG. For an nm-tuple w, we
define

[w] := (number of 0’s in w) − (number of 1’s in w)
nm

.

Now, consider w = xG′. Then

[w] = 1
nm

∑
i1,...,im∈[n]

(−1)
∑m

j=1⟨cij
,x⟩.

Expanding this summation and simplifying, we have:

[w] = 1
nm

∑
i1,...,im∈[n]

m∏
j=1

(−1)⟨cij
,x⟩

=
m∏

j=1

 1
n

∑
i∈[n]

(−1)⟨ci,x⟩


=

m∏
j=1

[xG]

= ([xG])m.

To find a bound for [xG], let

[xG] = (number of 0’s in xG) − (number of 1’s in xG)
n

.

Since the weight wtc) = d, we have

[xG] ≥ n − d − d

n
= n − 2d

n
.

Substituting this bound into the expression for [w], we get

[w] ≥
(

n − 2d

n

)m

.

Therefore, this bound implies

[w] ≥
(

n − 2d

n

)m

,

4

which means that the difference between the number of 0’s and 1’s in w is at least
nm ·

(
n−2d

n

)m
, or equivalently,

(no. of 0’s in w) − (no. of 1’s in w) ≥ (n − 2d)m.

Since the number of 1’s in w satisfies

no. of 1’s in w ≥ nm − (n − 2d)m

2 ,

we find that the effective minimum distance of the new code is at least
1
2 · nm(1 − (1 − 2δ)m).

Therefore, the new code is described by the parameters[
nm, k,

1
2(1 − (1 − 2δ)m) · nm

]
2

.

Thus, given an [n, k, δn]2 code, it is possible to construct a new code with parameters
[nm, k, 1

2(1 − (1 − 2δ)m) · nm]2 for any positive integer m.

■

Solution 2:
a) i. For x, y ∈ Fq, define

∆(x, y) =

0, if x = y

1, if x ̸= y

Let C be the set of all columns for the code C. We express S as follows:

S =
∑

c1,c2∈C

∆(c1, c2) =
∑
x∈C

∑
i ̸=j

∆(xi, xj).

Let freqx(α) denote the number of times α ∈ Fq appears in column x. Then
the sum S becomes:

S =
∑
x∈C

∑
α∈Fq

(freqx(α))(α)(|C| − (freqx(α))(α)).

The inner summation simplifies to∑
α∈Fq

(freqx(α))2(|C| − (freqx(α))),

because for each α, there are |C| − (freqx(α)) elements α′ such that α′ ̸= α
and ∆(α, α′) = 1, occurring freqx(α) times within x.
Since ∑α∈Fq

(freqx(α))2 = |C|, we can rearrange:

S =
∑
x∈C

(|C|2 −
∑

α∈Fq

(freqx(α))2)

5

Applying the Cauchy-Schwarz inequality:

∑
α∈Fq

((freqx(α))2) ≥

∑
α∈Fq

(freqx(α))
2

· 1
q

= |C|2 · 1
q

This allows us to bound S by:

S ≤
∑
x∈C

(
|C|2 − |C|2 · 1

q

)
= n|C|2

(
1 − 1

q

)

ii. Let R be the set of all rows for the code C. Since ∆(c, x) ≥ d for all c ̸= x in
C, the sum S can be described as:

S =
∑
x∈R

∑
c̸=x∈C

∆(c, x).

Given the minimum distance d, the inequality ∆(c, x) ≥ d holds for all c ̸= x,
and therefore,

S ≥ |C|(|C| − 1)d.

iii. From the results from parts a) and b), we have,

|C|(|C| − 1)d ≤ S ≤
(

1 − 1
q

)
|C|2n

=⇒ (|C| − 1)d ≤
(

1 − 1
q

)
|C|n

=⇒ |C|qd − qd ≤ |C|qn − |C|n
=⇒ |C|(qd − qn + n) ≤ qd

=⇒ |C| ≤ qd

qd − qn + n
= qd

qd − (q − 1)n.

b) i. The Griesmer Bound states that for an [n, k, d]q code, the length n must satisfy
the following inequality:

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

We start separating the sum into its first term and the remaining terms, as
follows:

n ≥
⌈

d

q0

⌉
+

k−1∑
i=1

⌈
d

qi

⌉
= d +

k−1∑
i=1

⌈
d

qi

⌉
.

Since each term in the sum
⌈

d
qi

⌉
for i ≥ 1 is at least 1 (assuming d and q are

positive), the sum of k − 1 such terms is at least k − 1. Thus,

n ≥ d + (k − 1).

Rearranging the inequality gives:

k ≤ n − d + 1.

6

ii. The Griesmer Bound for an [n, k, d]q code states that

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

Since each term in the series is the ceiling of a fraction, the sum can be bounded
from below by the sum of the actual fractions, as follows:

k−1∑
i=0

⌈
d

qi

⌉
≥

k−1∑
i=0

d

qi
= d

k−1∑
i=0

(
1
q

)i

.

This series sums to:

d

1 −
(

1
q

)k

1 − 1
q

 = d

(
1 − 1

qk

)
1 − 1

q

.

Since |C| = qk, we therefore have,

n ≥ d

1 − 1
|C|

1 − 1
q

 .

This implies:

1 − 1
|C|

≤ n

d

(
1 − 1

q

)

=⇒ 1
|C|

≥ 1 − n

d
+ n

qd

=⇒ |C| ≤ 1
1 − n

d
+ n

qd

= qd

qd − qn + n
.

This finally gives:
|C| ≤ qd

qd − (q − 1)n.

■

Solution 3:
a) Suppose C is a cyclic code. Given the linearity of C, it follows that (C, +) consti-

tutes a subgroup of the additive group formed by Fq[x]/(xn − 1). Define R to be
the quotient ring Fq[x]/(xn − 1), where the set {1, x, x2, . . . , xn−1} is a basis for R.
Consider a codeword (c0, c1, . . . , cn−1) ∈ C, For i = 0 to n − 1,

xi(c0 + c1x + · · · + cn−1x
n−1) = c0x

i + c1x
i+1 + · · · + cn−1x

i+n−1.

Simplifying modulo xn − 1 results in:

(cn−i, . . . , cn−1, c0, . . . , cn−i−1) ∈ C.

Thus, C is an ideal in R.

7

Conversely, if C is an ideal in Fq[x]/(xn − 1), then C is inherently a linear code
by the properties of ring ideals. Considering any codeword (c0, . . . , cn−1) in C and
applying a single multiplication by x, we have:

x(c0 + c1x + · · · + cn−1x
n−1) = cn−1 + c0x + c1x

2 + · · · + cn−2x
n−1.

Under modulo xn − 1, this gives the vector (cn−1, c0, . . . , cn−2) ∈ C. Thus, C is
cyclic.

b) To show that the generating polynomial g(x) of a cyclic code C of block length
n divides xn − 1 in Fq[x], we start by noting that C forms a principal ideal in
Fq[x]/(xn − 1). Therefore, any polynomial f(x) in Fq[x] can be written as:

xn − 1 = q(x)g(x) + r(x).

where the degree of r(x) is less than the degree of g(x). Since r(x)x ≡ −q(x)g(x)
mod xn − 1, therefore, r(x) ∈ C. However, because r(x) has a lower degree than
that of the generator g(x), the only polynomial of such degree in C that satisfies
these conditions is the zero polynomial. Thus, r(x) = 0, which implies that

xn − 1 = q(x)g(x).

Thus, g(x) divides xn − 1.

c) To describe the set of all possible cyclic codes of block length n over Fq, we first
observe that each cyclic code is defined by a generating polynomial that divides
xn − 1. Because xn − 1 can be factored into irreducible polynomials over Fq, every
generating polynomial of a cyclic code can be represented as a product of these
irreducible factors.
Let xn − 1 = f1(x)f2(x) . . . fm(x) be the decomposition of xn − 1 into irreducible
polynomials over Fq. The set of all generating polynomials g(x) of cyclic codes can
be given by: {∏

i∈S

fi(x) | S ⊆ {1, 2, . . . , m}
}

where each subset S of the index set {1, 2, . . . , m} corresponds to a unique cyclic
code whose generating polynomial is the product of the corresponding irreducible
factors selected by S.

d) In the field Fq, each cyclic code of block length n can be generated by a distinct
factor of the polynomial xn − 1. Since xn − 1 in Fq[x] decomposes into irreducible
factors, the number of different cyclic codes is determined by the number of ways we
can select these factors. If xn −1 has t distinct irreducible factors, then there are 2t

different subsets of these factors, including the empty set. Each subset corresponds
to a product of factors and thus a distinct generator polynomial, leading to a distinct
cyclic code. Therefore, there exist 2t many distinct cyclic codes of block length n.

e) For a cyclic code C with generating polynomial g(x) = g0 + g1x + · · · + gdxd, where
deg(g) = d, the code’s dimension is determined as n − d. This is because each
codeword in C can be expressed as c(x) = g(x)q(x) for some polynomial q(x) in

8

Fq[x], where the degree of q(x) is less than n − d. This implies that the basis for C
consists of the polynomials {g(x), xg(x), . . . , xn−d−1g(x)}.
The corresponding generator matrix G for C is constructed as follows:

G =


g0 g1 · · · gd 0 · · · 0
0 g0 g1 · · · gd · · · 0
...
0 · · · 0 g0 g1 · · · gd


(n−d)×n

f) To compute the generating polynomial g(x) of a cyclic code C from its generator
matrix G in Fn

q , the following algorithm can be applied:
Input: Generator matrix G of cyclic code C in Fn

q .
Output: Generating polynomial g(x).

1. Transform G into its row-echelon form using Gaussian elimination.
2. Identify the first non-zero row in the row echelon form of G. Let this row be

represented as [r0, r1, r2, . . . , rn−1].
3. Formulate the generating polynomial g(x) from the coefficients of the first

non-zero row:
g(x) = r0 + r1x + r2x

2 + · · · + rn−1x
n−1

Here, g(x) might often terminate at a degree less than n − 1, depending on
the position of the last non-zero coefficient.

Getting the cyclic generator matrix by Gaussian elimination takes poly(n) Fq-
operations.

g) Let’s consider the degree deg(g) of the generating polynomial g to be d. Given that
g is a divisor of xn − 1, we express xn − 1 as the product g(x)h(x), where h(x) is a
polynomial in Fq[x] with deg(h) = n −d. This polynomial h satisfies the conditions
for being the check polynomial of the cyclic code C, and it is monic due to g(x)
and xn − 1 both being monic.
For any codeword c(x) belonging to C, it holds that c(x) = q(x)g(x) for some
polynomial q(x) in Fq[x]. Consequently, the product c(x)h(x) = q(x)g(x)h(x) =
q(x)(xn − 1), which simplifies to 0 modulo xn − 1.
Also, if there exists a codeword c(x) such that c(x)h(x) is zero modulo xn − 1, and
if we assume c(x) = q(x)g(x) + r(x) with deg(r) < d, then c(x)h(x) = r(x)h(x).
This results in 0 modulo xn − 1 and since deg(r(x)h(x)) < d + n − d and h ̸= 0, it
must follow that r = 0, leading to c(x) = q(x)g(x), and thus c(x) ∈ C.
Define h(x) as h0 + h1x + . . . + hn−dxn−d. The parity check matrix H for C is
constructed as follows:

H =


hn−d . . . h0 0 . . . 0

0 hn−d . . . h0 . . . 0
...
0 . . . 0 hn−d . . . h0



9

To verify that the parity check matrix indeed functions correctly, consider a code-
word c(x) = c0+c1x+. . .+cn−1x

n−1 from the cyclic code C. Given that c(x)h(x) = 0
modulo xn − 1, we need all coefficients from xn−1 down to x0 in the expansion of
c(x)h(x) to be zero. This requirement can be expressed by the following system of
linear equations:

c0hn−d + c1hn−d−1 + . . . + cn−dh0 = 0,

c1hn−d + c2hn−d−1 + . . . + cn−d+1h0 = 0,

...
cn−dhd + cn−d+1hd−1 + . . . + cnh0 = 0.

These equations demonstrate that all codewords c in C indeed satisfy Hc = 0.
Thus, H is the appropriate parity matrix for C.

h) Given the generating polynomial g(x) of a cyclic code C in Fn
q as input, to output the

check polynomial of C in poly(n) Fq-operations, we can follow the below algorithm:
Input: Generating polynomial of the cyclic code C in Fn

q .
Output: Check polynomial of C.
Procedure:

1. Start with the polynomial xn − 1.
2. Perform the polynomial division of xn − 1 by g(x).
3. Return the result of the division, which is the check polynomial h(x) of C.

Here, the polynomial division process takes poly(n) Fq-operations.

■

10

