Assignment 2 - ACT1

Nirjhar Nath nirjhar@cmi.ac.in BMC202239

Solution 1:

a) We have, $\mathbb{F}_{q^m} = \mathbb{F}_q[x]/(p(x))$, where p(x) is an irreducible polynomial of degree m over \mathbb{F}_q . This setup implies an isomorphism between \mathbb{F}_{q^m} and the vector space \mathbb{F}_q^m . As a result, each element of \mathbb{F}_{q^m} can be represented as an m-tuple (or vector) over \mathbb{F}_q .

Given the original $(n, k, d)_{q^m}$ code, we can replace each symbol from \mathbb{F}_{q^m} with its corresponding *m*-tuple over \mathbb{F}_q . Thus, each codeword in the original code, which has length *n* over \mathbb{F}_{q^m} , is transformed into a codeword of length $n \cdot m$ over \mathbb{F}_q . The number of codewords remains the same, so the code size |C| is unchanged. Since each codeword can be described by *k* symbols over \mathbb{F}_{q^m} , the total number of possible codewords is

$$|C| = (q^m)^k = q^{km}.$$

Therefore, the dimension of the new code over \mathbb{F}_q is km.

Now, we analyze the minimum distance of the new code. If two codewords differ in at least d positions in the original $(n, k, d)_{q^m}$ code, their transformed versions will differ in at least $d \cdot m$ positions in the new $(nm, km, d')_q$ code (since each differing symbol in \mathbb{F}_{q^m} leads to m differing entries in \mathbb{F}_q). Therefore, $d' \geq d$. Thus, given an $(n, k, d)_{q^m}$ code, it is possible to construct an $(nm, km, d')_q$ code with $d' \geq d$.

b) Let G be the generator matrix for the original $[n, k, d]_{q^m}$ code. To construct a code over \mathbb{F}_q , we first identify \mathbb{F}_{q^m} with $\mathbb{F}_q[x]/(p(x))$, where p(x) is an irreducible polynomial of degree m. This lets us view elements of \mathbb{F}_{q^m} as m-dimensional vectors over \mathbb{F}_q (from part a)). Using this identification, we define an isomorphism ϕ from \mathbb{F}_{q^m} to \mathbb{F}_q^m , where each element $a \in \mathbb{F}_{q^m}$ is mapped to an m-dimensional vector over \mathbb{F}_q . Now we construct a new matrix G' by replacing each entry g_{ij} in G with a column vector in \mathbb{F}_q^m , structured as follows:

$$G'_{ij} = \begin{bmatrix} \phi(g_{ij}) \\ x\phi(g_{ij}) \\ \vdots \\ x^{m-1}\phi(g_{ij}) \end{bmatrix},$$

where x is interpreted as a power in the field representation. This replacement transforms each entry of G into an $m \times m$ matrix over \mathbb{F}_q , effectively expanding G into an [nm, km] matrix G' over \mathbb{F}_q .

The rows of G' remain linearly independent because the rows of G were linearly independent over \mathbb{F}_{q^m} , and ϕ is an isomorphism. Thus, the rows of G' form a basis for a new $[nm, km, d']_q$ code, where $d' \geq d$. Hence, G' is the generator matrix for the new code over \mathbb{F}_q .

c) Consider the new code defined by

$$C = \{(u, u + v) \mid u \in C_1, v \in C_2\}$$

where C_1 and C_2 are the original $[n, k_1, d_1]_q$ and $[n, k_2, d_2]_q$ codes, respectively.

This new code is a $[2n, k_1 + k_2, d']_q$ code, with $d' = \min(2d_1, d_2)$. To see why this holds, note that if u = 0, the minimum distance is $\min\{\operatorname{wt}(v)\} = d_2$, and if v = 0, the minimum distance is $2\min_{u \in C_1} \operatorname{wt}(u) = 2d_1$.

When both u and v are non-zero, we have

$$\operatorname{wt}(u, u+v) = \operatorname{wt}(u) + \operatorname{wt}(u+v) \ge \operatorname{wt}(u) + \operatorname{wt}(v) - \operatorname{wt}(u) = \operatorname{wt}(v) \ge \min(2d_1, d_2).$$

This holds because if v has d non-zero coordinates, at most wt(u) out of them can be made 0 by adding u. So $d' = \min(2d_1, d_2)$.

A generator matrix for this code is

$$G = \begin{bmatrix} G_1 & G_1 \\ 0 & G_2 \end{bmatrix}$$

where G_1 and G_2 are the generator matrices for C_1 and C_2 , respectively.

d) Given an $(n, k, d)_q$ code C where $d = \delta n$, we aim to show that for any positive integer m, there exists an $\left(n^m, \frac{k}{m}, (1 - (1 - \delta)^m) \cdot n^m\right)_{q^m}$ code. To construct this code, we use the tensor power $C^{\otimes m} = C \otimes C \otimes \cdots \otimes C$ (with m copies of C).

In the original code C, the alphabet size is q, so each symbol in C is an element of the set $\Sigma = \mathbb{F}_q$. For the new code $C^{\otimes m}$, we define an alphabet of size q^m , denoted by Σ' , where Σ' consists of all possible *m*-tuples over \mathbb{F}_q : $\Sigma' = \{(q_1, q_2, \ldots, q_m) : q_i \in \mathbb{F}_q\}$. Thus, $|\Sigma'| = q^m$.

Each codeword $c = (p_1, p_2, \ldots, p_n) \in C$ is expanded in $C^{\otimes m}$ by taking all possible products of elements from $\{p_1, p_2, \ldots, p_n\}$ across m copies of C, resulting in codewords of length n^m over Σ' . Each element in a codeword of $C^{\otimes m}$ is represented as an m-tuple, so the length of each codeword in the new code is n^m .

Since each codeword in C is expanded to an alphabet of size q^m , the number of codewords in $C^{\otimes m}$ remains the same as in C, giving us $|C| = (q^m)^{\frac{k}{m}}$. This implies that the dimension of the new code over \mathbb{F}_{q^m} is $\frac{k}{m}$.

To determine the minimum distance of $C^{\otimes m}$, we note that the minimum distance of C is $d = \delta n$, meaning that any two distinct codewords in C differ in at least d positions. Thus, in C, at most n - d positions can match between any two codewords. When we expand each codeword in C to form $C^{\otimes m}$, each position in the original codeword (which could match in at most n - d positions) is represented by m symbols in $C^{\otimes m}$, resulting in a maximum of $(n - d)^m$ matching positions in the new code.

Therefore, the minimum number of differing positions between any two codewords in $C^{\otimes m}$ is at least $n^m - (n - d)^m$. Substituting $d = \delta n$, we find that the minimum distance d' of $C^{\otimes m}$ is:

$$d' = n^m - (n - \delta n)^m = n^m - n^m \cdot (1 - \delta)^m = n^m \cdot (1 - (1 - \delta)^m).$$

Thus, the minimum distance of $C^{\otimes m}$ is $d' = n^m (1 - (1 - \delta)^m)$.

Thus, given an $(n, k, \delta n)_q$ code, for any positive integer m, we can construct an $\left(n^m, \frac{k}{m}, (1-(1-\delta)^m) \cdot n^m\right)_{a^m}$ code.

e) If there exists an $[n, k, \delta n]_2$ code, then for every positive integer m, there exists an $[n^m, k, \frac{1}{2}(1 - (1 - 2\delta)^m) \cdot n^m]_2$ code.

Let the initial code be an $[n, k, d]_2$ code, where $d = \delta n$. Let G be the $k \times n$ generator matrix for this code. We create a new generator matrix G' of dimension $n^m \times k$ as follows: each column in G' is represented by an m-tuple (i_1, i_2, \ldots, i_m) , where $1 \leq i_p \leq n$. We represent the i^{th} column of G by c_i , and a bit $b \in \{0, 1\}$ is represented as $(-1)^b \in \{1, -1\}$.

In G', the $(i_1, \ldots, i_m)^{\text{th}}$ column is defined as the sum of the columns i_1, i_2, \ldots, i_m in G. Thus, for any vector x, xG' is an n^m -length code. This construction ensures that the new code has code length n^m , and since the number of codewords remains the same, the dimension remains k.

For any $i \in [n]$, $\langle c_i, x \rangle$ represents the *i*th coordinate of xG. For an n^m -tuple w, we define

$$[w] := \frac{(\text{number of } 0\text{'s in } w) - (\text{number of } 1\text{'s in } w)}{n^m}.$$

Now, consider w = xG'. Then

$$[w] = \frac{1}{n^m} \sum_{i_1, \dots, i_m \in [n]} (-1)^{\sum_{j=1}^m \langle c_{i_j}, x \rangle}.$$

Expanding this summation and simplifying, we have:

$$[w] = \frac{1}{n^m} \sum_{i_1,\dots,i_m \in [n]} \prod_{j=1}^m (-1)^{\langle c_{i_j}, x \rangle}$$
$$= \prod_{j=1}^m \left(\frac{1}{n} \sum_{i \in [n]} (-1)^{\langle c_i, x \rangle} \right)$$
$$= \prod_{j=1}^m [xG]$$
$$= ([xG])^m.$$

To find a bound for [xG], let

$$[xG] = \frac{(\text{number of 0's in } xG) - (\text{number of 1's in } xG)}{n}.$$

Since the weight wtc = d, we have

$$[xG] \ge \frac{n-d-d}{n} = \frac{n-2d}{n}.$$

Substituting this bound into the expression for [w], we get

$$[w] \ge \left(\frac{n-2d}{n}\right)^m.$$

Therefore, this bound implies

$$[w] \ge \left(\frac{n-2d}{n}\right)^m,$$

which means that the difference between the number of 0's and 1's in w is at least $n^m \cdot \left(\frac{n-2d}{n}\right)^m$, or equivalently,

(no. of 0's in
$$w$$
) – (no. of 1's in w) $\ge (n - 2d)^m$.

Since the number of 1's in w satisfies

no. of 1's in
$$w \ge \frac{n^m - (n - 2d)^m}{2}$$
,

we find that the effective minimum distance of the new code is at least

$$\frac{1}{2} \cdot n^m (1 - (1 - 2\delta)^m).$$

Therefore, the new code is described by the parameters

$$\left[n^{m}, k, \frac{1}{2}(1 - (1 - 2\delta)^{m}) \cdot n^{m}\right]_{2}.$$

Thus, given an $[n, k, \delta n]_2$ code, it is possible to construct a new code with parameters $[n^m, k, \frac{1}{2}(1 - (1 - 2\delta)^m) \cdot n^m]_2$ for any positive integer m.

Solution 2:

a) i. For $x, y \in F_q$, define

$$\Delta(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Let \mathcal{C} be the set of all columns for the code C. We express S as follows:

$$S = \sum_{c_1, c_2 \in C} \Delta(c_1, c_2) = \sum_{x \in \mathcal{C}} \sum_{i \neq j} \Delta(x_i, x_j).$$

Let $\operatorname{freq}_x(\alpha)$ denote the number of times $\alpha \in F_q$ appears in column x. Then the sum S becomes:

$$S = \sum_{x \in \mathcal{C}} \sum_{\alpha \in F_q} (\operatorname{freq}_x(\alpha))(\alpha) (|C| - (\operatorname{freq}_x(\alpha))(\alpha)).$$

The inner summation simplifies to

$$\sum_{\alpha \in F_q} (\operatorname{freq}_x(\alpha))^2 (|C| - (\operatorname{freq}_x(\alpha))),$$

because for each α , there are $|C| - (\operatorname{freq}_x(\alpha))$ elements α' such that $\alpha' \neq \alpha$ and $\Delta(\alpha, \alpha') = 1$, occurring $\operatorname{freq}_x(\alpha)$ times within x.

Since $\sum_{\alpha \in F_q} (\operatorname{freq}_x(\alpha))^2 = |C|$, we can rearrange:

$$S = \sum_{x \in \mathcal{C}} (|C|^2 - \sum_{\alpha \in F_q} (\operatorname{freq}_x(\alpha))^2)$$

Applying the Cauchy-Schwarz inequality:

$$\sum_{\alpha \in F_q} ((\operatorname{freq}_x(\alpha))^2) \ge \left(\sum_{\alpha \in F_q} (\operatorname{freq}_x(\alpha))\right)^2 \cdot \frac{1}{q} = |C|^2 \cdot \frac{1}{q}$$

This allows us to bound S by:

$$S \le \sum_{x \in \mathcal{C}} \left(|C|^2 - |C|^2 \cdot \frac{1}{q} \right) = n|C|^2 \left(1 - \frac{1}{q} \right)$$

ii. Let \mathcal{R} be the set of all rows for the code C. Since $\Delta(c, x) \ge d$ for all $c \ne x$ in C, the sum S can be described as:

$$S = \sum_{x \in \mathcal{R}} \sum_{c \neq x \in C} \Delta(c, x).$$

Given the minimum distance d, the inequality $\Delta(c, x) \ge d$ holds for all $c \ne x$, and therefore,

$$S \ge |C|(|C|-1)d.$$

iii. From the results from parts a) and b), we have,

$$\begin{split} |C|(|C|-1)d &\leq S \leq \left(1-\frac{1}{q}\right)|C|^2n\\ \Longrightarrow (|C|-1)d \leq \left(1-\frac{1}{q}\right)|C|n\\ \Longrightarrow |C|qd-qd \leq |C|qn-|C|n\\ \Longrightarrow |C|(qd-qn+n) \leq qd\\ \Longrightarrow |C| \leq \frac{qd}{qd-qn+n} = \frac{qd}{qd-(q-1)n}. \end{split}$$

b) i. The Griesmer Bound states that for an $[n, k, d]_q$ code, the length n must satisfy the following inequality:

$$n \ge \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil.$$

We start separating the sum into its first term and the remaining terms, as follows:

$$n \ge \left\lceil \frac{d}{q^0} \right\rceil + \sum_{i=1}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil = d + \sum_{i=1}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil.$$

Since each term in the sum $\left\lceil \frac{d}{q^i} \right\rceil$ for $i \ge 1$ is at least 1 (assuming d and q are positive), the sum of k-1 such terms is at least k-1. Thus,

 $n \ge d + (k - 1).$

Rearranging the inequality gives:

$$k \le n - d + 1.$$

ii. The Griesmer Bound for an $[n, k, d]_q$ code states that

$$n \ge \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil.$$

Since each term in the series is the ceiling of a fraction, the sum can be bounded from below by the sum of the actual fractions, as follows:

$$\sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil \ge \sum_{i=0}^{k-1} \frac{d}{q^i} = d \sum_{i=0}^{k-1} \left(\frac{1}{q} \right)^i.$$

This series sums to:

$$d\left(\frac{1-\left(\frac{1}{q}\right)^k}{1-\frac{1}{q}}\right) = d\frac{\left(1-\frac{1}{q^k}\right)}{1-\frac{1}{q}}.$$

Since $|C| = q^k$, we therefore have,

$$n \ge d\left(\frac{1-\frac{1}{|C|}}{1-\frac{1}{q}}\right).$$

This implies:

$$\begin{split} 1 &- \frac{1}{|C|} \leq \frac{n}{d} \left(1 - \frac{1}{q} \right) \\ \Longrightarrow &\frac{1}{|C|} \geq 1 - \frac{n}{d} + \frac{n}{qd} \\ \Longrightarrow &|C| \leq \frac{1}{1 - \frac{n}{d} + \frac{n}{qd}} = \frac{qd}{qd - qn + n} \end{split}$$

This finally gives:

$$C| \le \frac{qd}{qd - (q-1)n}.$$

a) Suppose C is a cyclic code. Given the linearity of C, it follows that (C, +) constitutes a subgroup of the additive group formed by $\mathbb{F}_q[x]/(x^n - 1)$. Define R to be the quotient ring $\mathbb{F}_q[x]/(x^n - 1)$, where the set $\{1, x, x^2, \ldots, x^{n-1}\}$ is a basis for R. Consider a codeword $(c_0, c_1, \ldots, c_{n-1}) \in C$, For i = 0 to n - 1,

$$x^{i}(c_{0} + c_{1}x + \dots + c_{n-1}x^{n-1}) = c_{0}x^{i} + c_{1}x^{i+1} + \dots + c_{n-1}x^{i+n-1}.$$

Simplifying modulo $x^n - 1$ results in:

$$(c_{n-i}, \ldots, c_{n-1}, c_0, \ldots, c_{n-i-1}) \in C.$$

Thus, C is an ideal in R.

Conversely, if C is an ideal in $\mathbb{F}_q[x]/(x^n - 1)$, then C is inherently a linear code by the properties of ring ideals. Considering any codeword (c_0, \ldots, c_{n-1}) in C and applying a single multiplication by x, we have:

$$x(c_0 + c_1x + \dots + c_{n-1}x^{n-1}) = c_{n-1} + c_0x + c_1x^2 + \dots + c_{n-2}x^{n-1}.$$

Under modulo $x^n - 1$, this gives the vector $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$. Thus, C is cyclic.

b) To show that the generating polynomial g(x) of a cyclic code C of block length n divides $x^n - 1$ in $\mathbb{F}_q[x]$, we start by noting that C forms a principal ideal in $\mathbb{F}_q[x]/(x^n - 1)$. Therefore, any polynomial f(x) in $\mathbb{F}_q[x]$ can be written as:

$$x^n - 1 = q(x)g(x) + r(x).$$

where the degree of r(x) is less than the degree of g(x). Since $r(x)x \equiv -q(x)g(x) \mod x^n - 1$, therefore, $r(x) \in C$. However, because r(x) has a lower degree than that of the generator g(x), the only polynomial of such degree in C that satisfies these conditions is the zero polynomial. Thus, r(x) = 0, which implies that

$$x^n - 1 = q(x)g(x).$$

Thus, g(x) divides $x^n - 1$.

c) To describe the set of all possible cyclic codes of block length n over \mathbb{F}_q , we first observe that each cyclic code is defined by a generating polynomial that divides $x^n - 1$. Because $x^n - 1$ can be factored into irreducible polynomials over \mathbb{F}_q , every generating polynomial of a cyclic code can be represented as a product of these irreducible factors.

Let $x^n - 1 = f_1(x)f_2(x) \dots f_m(x)$ be the decomposition of $x^n - 1$ into irreducible polynomials over \mathbb{F}_q . The set of all generating polynomials g(x) of cyclic codes can be given by:

$$\left\{\prod_{i\in S} f_i(x) \mid S \subseteq \{1, 2, \dots, m\}\right\}$$

where each subset S of the index set $\{1, 2, ..., m\}$ corresponds to a unique cyclic code whose generating polynomial is the product of the corresponding irreducible factors selected by S.

- d) In the field \mathbb{F}_q , each cyclic code of block length n can be generated by a distinct factor of the polynomial $x^n - 1$. Since $x^n - 1$ in $\mathbb{F}_q[x]$ decomposes into irreducible factors, the number of different cyclic codes is determined by the number of ways we can select these factors. If $x^n - 1$ has t distinct irreducible factors, then there are 2^t different subsets of these factors, including the empty set. Each subset corresponds to a product of factors and thus a distinct generator polynomial, leading to a distinct cyclic code. Therefore, there exist 2^t many distinct cyclic codes of block length n.
- e) For a cyclic code C with generating polynomial $g(x) = g_0 + g_1 x + \dots + g_d x^d$, where $\deg(g) = d$, the code's dimension is determined as n d. This is because each codeword in C can be expressed as c(x) = g(x)q(x) for some polynomial q(x) in

 $\mathbb{F}_q[x]$, where the degree of q(x) is less than n-d. This implies that the basis for C consists of the polynomials $\{g(x), xg(x), \ldots, x^{n-d-1}g(x)\}$.

The corresponding generator matrix G for C is constructed as follows:

$$G = \begin{bmatrix} g_0 & g_1 & \cdots & g_d & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_d & \cdots & 0 \\ \vdots & \ddots & \ddots & & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_d \end{bmatrix}_{(n-d) \times n}$$

f) To compute the generating polynomial g(x) of a cyclic code C from its generator matrix G in \mathbb{F}_q^n , the following algorithm can be applied:

Input: Generator matrix G of cyclic code C in \mathbb{F}_q^n .

Output: Generating polynomial g(x).

- 1. Transform G into its row-echelon form using Gaussian elimination.
- 2. Identify the first non-zero row in the row echelon form of G. Let this row be represented as $[r_0, r_1, r_2, \ldots, r_{n-1}]$.
- 3. Formulate the generating polynomial g(x) from the coefficients of the first non-zero row:

 $g(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}$

Here, g(x) might often terminate at a degree less than n-1, depending on the position of the last non-zero coefficient.

Getting the cyclic generator matrix by Gaussian elimination takes $poly(n) \mathbb{F}_{q}$ operations.

g) Let's consider the degree deg(g) of the generating polynomial g to be d. Given that g is a divisor of $x^n - 1$, we express $x^n - 1$ as the product g(x)h(x), where h(x) is a polynomial in $\mathbb{F}_q[x]$ with deg(h) = n - d. This polynomial h satisfies the conditions for being the check polynomial of the cyclic code C, and it is monic due to g(x) and $x^n - 1$ both being monic.

For any codeword c(x) belonging to C, it holds that c(x) = q(x)g(x) for some polynomial q(x) in $\mathbb{F}_q[x]$. Consequently, the product $c(x)h(x) = q(x)g(x)h(x) = q(x)(x^n - 1)$, which simplifies to 0 modulo $x^n - 1$.

Also, if there exists a codeword c(x) such that c(x)h(x) is zero modulo $x^n - 1$, and if we assume c(x) = q(x)g(x) + r(x) with $\deg(r) < d$, then c(x)h(x) = r(x)h(x). This results in 0 modulo $x^n - 1$ and since $\deg(r(x)h(x)) < d + n - d$ and $h \neq 0$, it must follow that r = 0, leading to c(x) = q(x)g(x), and thus $c(x) \in C$.

Define h(x) as $h_0 + h_1 x + \ldots + h_{n-d} x^{n-d}$. The parity check matrix H for C is constructed as follows:

$$H = \begin{bmatrix} h_{n-d} & \dots & h_0 & 0 & \dots & 0\\ 0 & h_{n-d} & \dots & h_0 & \dots & 0\\ \vdots & & \ddots & & \ddots & \vdots\\ 0 & \dots & 0 & h_{n-d} & \dots & h_0 \end{bmatrix}$$

To verify that the parity check matrix indeed functions correctly, consider a codeword $c(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1}$ from the cyclic code C. Given that c(x)h(x) = 0modulo $x^n - 1$, we need all coefficients from x^{n-1} down to x^0 in the expansion of c(x)h(x) to be zero. This requirement can be expressed by the following system of linear equations:

$$c_{0}h_{n-d} + c_{1}h_{n-d-1} + \ldots + c_{n-d}h_{0} = 0,$$

$$c_{1}h_{n-d} + c_{2}h_{n-d-1} + \ldots + c_{n-d+1}h_{0} = 0,$$

$$\vdots$$

$$c_{n-d}h_{d} + c_{n-d+1}h_{d-1} + \ldots + c_{n}h_{0} = 0.$$

These equations demonstrate that all codewords c in C indeed satisfy Hc = 0. Thus, H is the appropriate parity matrix for C.

h) Given the generating polynomial g(x) of a cyclic code C in \mathbb{F}_q^n as input, to output the check polynomial of C in $poly(n) \mathbb{F}_q$ -operations, we can follow the below algorithm:

Input: Generating polynomial of the cyclic code C in \mathbb{F}_{q}^{n} .

Output: Check polynomial of C.

Procedure:

- 1. Start with the polynomial $x^n 1$.
- 2. Perform the polynomial division of $x^n 1$ by g(x).
- 3. Return the result of the division, which is the check polynomial h(x) of C.

Here, the polynomial division process takes $poly(n) \mathbb{F}_q$ -operations.