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Solution 1:

a)

We have, F,m = F,[z]/(p(z)), where p(z) is an irreducible polynomial of degree m
over F,. This setup implies an isomorphism between F,~ and the vector space F;".

As a result, each element of Fym can be represented as an m-tuple (or vector) over
F

Given the original (n, k,d),~ code, we can replace each symbol from F,» with its
corresponding m-tuple over IF,. Thus, each codeword in the original code, which
has length n over Fym, is transformed into a codeword of length n - m over F,. The
number of codewords remains the same, so the code size |C| is unchanged. Since
each codeword can be described by & symbols over F,m, the total number of possible
codewords is

q-

’C| —_ <qm)k — qkm.
Therefore, the dimension of the new code over F, is km.

Now, we analyze the minimum distance of the new code. If two codewords differ in
at least d positions in the original (n, k,d),m code, their transformed versions will
differ in at least d - m positions in the new (nm, km, d’), code (since each differing
symbol in Fym leads to m differing entries in F,). Therefore, d > d. Thus, given
an (n, k,d),m code, it is possible to construct an (nm, km,d’), code with d’ > d.

Let G be the generator matrix for the original [n,k,d];m code. To construct a
code over F,, we first identify F,m with F,[z]/(p(z)), where p(z) is an irreducible
polynomial of degree m. This lets us view elements of F,» as m-dimensional vectors
over F, (from part a)). Using this identification, we define an isomorphism ¢ from
Fym to ", where each element a € Fym is mapped to an m-dimensional vector over
F,. Now we construct a new matrix G’ by replacing each entry g;; in G with a
column vector in ", structured as follows:

¢(9ij)
G;j _ x¢('gij) ’
2" o(gis)

where x is interpreted as a power in the field representation. This replacement
transforms each entry of GG into an m x m matrix over F,, effectively expanding G
into an [nm, km] matrix G’ over F,,.

The rows of G' remain linearly independent because the rows of G were linearly
independent over F;m, and ¢ is an isomorphism. Thus, the rows of G’ form a basis
for a new [nm, km,d'], code, where d’ > d. Hence, G’ is the generator matrix for
the new code over F,.

Consider the new code defined by
C={(u,u+v)|ueCveCy}

where C} and Cj are the original [n, &y, d;], and [n, ks, d3], codes, respectively.

This new code is a [2n, ky + k2, d'], code, with d’ = min(2d;, ds). To see why this
holds, note that if v = 0, the minimum distance is min{wt(v)} = ds, and if v = 0,
the minimum distance is 2 min,ec, wt(u) = 2d;.
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e)

When both u and v are non-zero, we have
wt(u, u +v) = wt(u) + wt(u +v) > wt(u) + wt(v) — wt(u) = wt(v) > min(2d;, ds).

This holds because if v has d non-zero coordinates, at most wt(u) out of them can
be made 0 by adding u. So d' = min(2d,, ds).

A generator matrix for this code is

_|G1 Gy
=% &

where GG; and G4 are the generator matrices for C; and Cy, respectively.

Given an (n,k,d), code C where d = dn, we aim to show that for any positive

integer m, there exists an (nm, E@a-@1-6m- nm) code. To construct this
qm

code, we use the tensor power C¥" = C® C ® ---® C (with m copies of C).

In the original code C, the alphabet size is ¢, so each symbol in C' is an element of the
set X = F,. For the new code C®™, we define an alphabet of size ¢", denoted by ¥/,
where ¥’ consists of all possible m-tuples over F: ¥' = {(¢1,¢2,.-.,¢m) : ¢ € Fy}.
Thus, |¥/| = ¢™.

Each codeword ¢ = (p1,pa,...,pn) € C is expanded in C®™ by taking all possible
products of elements from {p;,ps,...,ps} across m copies of C, resulting in code-
words of length n™ over ¥’. Each element in a codeword of C®™ is represented as
an m-tuple, so the length of each codeword in the new code is n™.

Since each codeword in C' is expanded to an alphabet of size ¢, the number of
k

codewords in C®™ remains the same as in C, giving us |C| = (¢™)w. This implies

that the dimension of the new code over Fym is %

To determine the minimum distance of C®™, we note that the minimum distance
of C' is d = dn, meaning that any two distinct codewords in C differ in at least
d positions. Thus, in C, at most n — d positions can match between any two
codewords. When we expand each codeword in C' to form C®™, each position in
the original codeword (which could match in at most n — d positions) is represented
by m symbols in C®™, resulting in a maximum of (n — d)™ matching positions in
the new code.

Therefore, the minimum number of differing positions between any two codewords
in C®™ is at least n”™ — (n — d)™. Substituting d = én, we find that the minimum
distance d’ of C®™ is:

d=n"—(n—-m)"=n"=n"-1-0)"=n"-1-(1-9§").

Thus, the minimum distance of C®™ is d' = n™(1 — (1 — §)™).
Thus, given an (n,k,dn), code, for any positive integer m, we can construct an
(nm E(l—(1—-0)m) nm) code.

qm

Y m?

If there exists an [n, k, 0n]s code, then for every positive integer m, there exists an
[n™, k, 5(1 — (1 —26)™) - n™]5 code.



Let the initial code be an [n, k, d]s code, where d = dn. Let G be the k X n generator
matrix for this code. We create a new generator matrix G’ of dimension n™ X k
as follows: each column in G’ is represented by an m-tuple (iy,is,...,4y,), where
1 < i, < n. We represent the i®® column of G by ¢;, and a bit b € {0,1} is
represented as (—1)” € {1, —1}.

In G/, the (iy,..., i)™ column is defined as the sum of the columns iy, s, ..., in
in G. Thus, for any vector x, G’ is an n"-length code. This construction ensures
that the new code has code length n™, and since the number of codewords remains
the same, the dimension remains k.

For any i € [n], {c;, ) represents the i*" coordinate of 2G. For an n™-tuple w, we

define
(number of 0’s in w) — (number of 1’s in w)

w] = —

Now, consider w = xG’. Then

i17---7im6[n]

Expanding this summation and simplifying, we have:
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To find a bound for [zG], let

2G] = (number of 0’s in zG) — (number of 1’s in 2G)

n

Since the weight wtc) = d, we have

n—d—d_n—2d

n n

[2G] >

Substituting this bound into the expression for [w], we get

W] > (n;?d)m‘

Therefore, this bound implies




which means that the difference between the number of 0’s and 1’s in w is at least

nm - ("‘Tz‘i)m, or equivalently,

(no. of 0’s in w) — (no. of 1’s in w) > (n — 2d)™.

Since the number of 1’s in w satisfies

n™ — (n—2d)"
2 )

no. of I’'s in w >

we find that the effective minimum distance of the new code is at least

;-w%y_u_Qam.

Therefore, the new code is described by the parameters

n™ k, 1(1 —(1—=20)")-n™
2 2

Thus, given an [n, k, 0n]s code, it is possible to construct a new code with parameters
[n™, k, 3(1 — (1 —26)™) - n™]5 for any positive integer m.

Solution 2:

a) i Forx,y € F,, define

Alr,y) = 0, ifz=y
TN ey

Let C be the set of all columns for the code C. We express S as follows:

S = Z Aley, ) = ZZA(wi,xj).

c1,e2€C zeC i#j

Let freq,(«) denote the number of times o € F, appears in column x. Then
the sum S becomes:

S=3_ > (freq,(a)(@)(|C] — (freq,(a))(a)).

zeC acFy

The inner summation simplifies to

> (freq, (a))*(IC] — (freq,(a))),

acly

because for each «, there are |C| — (freq,(«)) elements o/ such that o/ # «
and A(a, o) =1, occurring freq, (o) times within z.
Since Y e, (freq, (a))* = |C|, we can rearrange:

S =3 (CP = 3 (freq,())?)

zeC acly



ii.

1.

Applying the Cauchy-Schwarz inequality:

> ((freq,(a))?) > (Z (freqx(a))> . (11 = |C)?- ;

acly acky

This allows us to bound S by:

segler-er)er(-]

zeC

Let R be the set of all rows for the code C. Since A(c,z) > d for all ¢ # x in
C, the sum S can be described as:

S=> Y Ax).

TER ctzelC

Given the minimum distance d, the inequality A(c,xz) > d holds for all ¢ # z,
and therefore,

S > |C|(|C] - 1)d.

From the results from parts a) and b), we have,
1 2
IC|(|IC]—1)d < S < 1—5 |C|*n

(|l = 1)d < (1 _ ;) Cln

— |Clqd — qd < |Clgn — |C|n
— |C|(qd — qn +n) < qd
qd qd

— |C| < = .
| ‘_qd—qn—i-n qd — (g —1)n

. The Griesmer Bound states that for an [n, k, d|, code, the length n must satisfy

the following inequality:
k—1
d
im0 | ¢
We start separating the sum into its first term and the remaining terms, as
follows: . -
d — | d — | d
LJ ; Lw 2:: q

Since each term in the sum [%1 for i > 1 is at least 1 (assuming d and ¢ are

positive), the sum of k£ — 1 such terms is at least k& — 1. Thus,
n>d+ (k—1).
Rearranging the inequality gives:

k<n-—d-+1.



ii. The Griesmer Bound for an [n, k, d], code states that
k-1
d
im0 | ¢

Since each term in the series is the ceiling of a fraction, the sum can be bounded
from below by the sum of the actual fractions, as follows:

slil=5i-50)-

This series sums to:
RONINE
11 11~
q q

Since |C| = ¢*, we therefore have,

This implies:

This finally gives:

Solution 3:

a) Suppose C'is a cyclic code. Given the linearity of C, it follows that (C,+) consti-
tutes a subgroup of the additive group formed by F,[z]|/(z" — 1). Define R to be
the quotient ring Fy[z]/(z™ — 1), where the set {1,z,2?,...,2" "'} is a basis for R.

Consider a codeword (cg,¢1,...,¢,1) € C, Fori =0ton —1,
T (co+ ezt Fcp1a™ ) = cort + x4 et
Simplifying modulo ™ — 1 results in:

(Cn—i7 -3 Cp—1,Coy - - - >Cn—i—1> € C.

Thus, C' is an ideal in R.



Conversely, if C' is an ideal in F [z]/(z™ — 1), then C is inherently a linear code
by the properties of ring ideals. Considering any codeword (cy, ..., c,—1) in C' and
applying a single multiplication by z, we have:

w(cog+eiw+ -+ 12" ) =+ cor F @+ ey
Under modulo 2™ — 1, this gives the vector (¢,—1,co,...,¢n—2) € C. Thus, C is
cyclic.

To show that the generating polynomial g(z) of a cyclic code C' of block length
n divides 2™ — 1 in F,[z], we start by noting that C' forms a principal ideal in
F,[z]/(z™ — 1). Therefore, any polynomial f(x) in F,[z] can be written as:

a" =1 =q(x)g(z) +r(r).

where the degree of r(x) is less than the degree of g(z). Since r(z)x = —q(x)g(x)
mod z™ — 1, therefore, r(z) € C. However, because r(z) has a lower degree than
that of the generator g(z), the only polynomial of such degree in C' that satisfies
these conditions is the zero polynomial. Thus, r(x) = 0, which implies that

a" —1=q(z)g(x).
Thus, g(x) divides z™ — 1.

To describe the set of all possible cyclic codes of block length n over F,, we first
observe that each cyclic code is defined by a generating polynomial that divides
" — 1. Because 2" — 1 can be factored into irreducible polynomials over [F,, every
generating polynomial of a cyclic code can be represented as a product of these
irreducible factors.

Let 2" — 1 = fi(z)fa(x) ... fum(z) be the decomposition of ™ — 1 into irreducible
polynomials over F,. The set of all generating polynomials g(z) of cyclic codes can
be given by:

() |5 € 0.2
i€s

where each subset S of the index set {1,2,...,m} corresponds to a unique cyclic
code whose generating polynomial is the product of the corresponding irreducible
factors selected by S.

In the field F,, each cyclic code of block length n can be generated by a distinct
factor of the polynomial 2" — 1. Since z" — 1 in F,[z] decomposes into irreducible
factors, the number of different cyclic codes is determined by the number of ways we
can select these factors. If 2™ — 1 has ¢ distinct irreducible factors, then there are 2
different subsets of these factors, including the empty set. Each subset corresponds
to a product of factors and thus a distinct generator polynomial, leading to a distinct
cyclic code. Therefore, there exist 2! many distinct cyclic codes of block length n.

For a cyclic code C' with generating polynomial g(x) = go + g1 + - - - + gax?, where
deg(g) = d, the code’s dimension is determined as n — d. This is because each
codeword in C' can be expressed as c¢(z) = g(z)g(x) for some polynomial ¢(z) in



[F,[z], where the degree of ¢(z) is less than n — d. This implies that the basis for C
consists of the polynomials {g(z), zg(z), ..., 2" 4 1g(z)}.

The corresponding generator matrix G for C' is constructed as follows:

G 9 - ga 0 - 0

O g g « s . gd P 0
a=1|. 7 7 o

O “ .. 0 gO gl gd (n_d)Xn

To compute the generating polynomial g(z) of a cyclic code C' from its generator
matrix G in Fy, the following algorithm can be applied:

Input: Generator matrix G of cyclic code C in Fy.

Output: Generating polynomial g(x).

1. Transform G into its row-echelon form using Gaussian elimination.

2. Identify the first non-zero row in the row echelon form of G. Let this row be
represented as [rg, 71,79, . .., Tn_1].

3. Formulate the generating polynomial g(z) from the coefficients of the first
NoN-zero row:

g(x) = 1o+ 1@ +rex® 4+ 1"t

Here, g(z) might often terminate at a degree less than n — 1, depending on
the position of the last non-zero coefficient.

Getting the cyclic generator matrix by Gaussian elimination takes poly(n) F,-
operations.

Let’s consider the degree deg(g) of the generating polynomial g to be d. Given that
g is a divisor of 2™ — 1, we express 2" — 1 as the product g(x)h(z), where h(zx) is a
polynomial in IF,[z] with deg(h) = n —d. This polynomial h satisfies the conditions
for being the check polynomial of the cyclic code C, and it is monic due to g(x)
and " — 1 both being monic.

For any codeword c¢(z) belonging to C, it holds that c¢(x) = ¢(x)g(z) for some
polynomial ¢(z) in F,[z]. Consequently, the product c¢(z)h(x) = ¢(z)g(x)h(z) =
q(z)(z™ — 1), which simplifies to 0 modulo 2™ — 1.

Also, if there exists a codeword ¢(z) such that c¢(x)h(z) is zero modulo 2" — 1, and
if we assume c(x) = g(x)g(x) + r(x) with deg(r) < d, then c(x)h(x) = r(z)h(z).
This results in 0 modulo 2™ — 1 and since deg(r(z)h(z)) <d+n —d and h # 0, it
must follow that r = 0, leading to ¢(x) = ¢(x)g(x), and thus ¢(z) € C.

Define h(x) as hg + hx + ... + hp_g2" % The parity check matrix H for C is
constructed as follows:

ho—a ... hg O 0
. 0  hpg - ho 0
0 0 hp_a ho



To verify that the parity check matrix indeed functions correctly, consider a code-
word ¢(z) = cy+c1z+. . .4, 12" ! from the cyclic code C. Given that c¢(z)h(z) = 0
modulo 2™ — 1, we need all coefficients from 2"~! down to 2° in the expansion of
c(x)h(z) to be zero. This requirement can be expressed by the following system of
linear equations:

Coln—q + c1thp—a—1+ ...+ cn_gho =0,
cthp—aq+ cahp_g_1+ ...+ ch_ar1ho =0,

Cn—dhd + cn—d—&-lhd—l +...+ CnhO = 0.

These equations demonstrate that all codewords ¢ in C' indeed satisfy Hc = 0.
Thus, H is the appropriate parity matrix for C.

Given the generating polynomial g(x) of a cyclic code C'in F as input, to output the
check polynomial of C' in poly(n) F,-operations, we can follow the below algorithm:
Input: Generating polynomial of the cyclic code C' in F7.

Output: Check polynomial of C.

Procedure:

1. Start with the polynomial z™ — 1.
2. Perform the polynomial division of ™ — 1 by g(z).
3. Return the result of the division, which is the check polynomial h(z) of C.

Here, the polynomial division process takes poly(n) F,-operations.
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